Аннотация

к рабочей программе дисциплины «Молекулярные механизмы токсических процессов»

направление подготовки 04.04.01 Химия направленность (профиль): Химия

Форма обучения: очная

1. Цель изучения дисциплины

Основной целью изучения дисциплины *Молекулярные механизмы токсических процессов* является усвоение студентами знаний по молекулярным механизмам токсических процессов, умение пользоваться ими и понимание студентами сложных механизмов превращений ксенобиотиков в живом организме. Курс охватывает круг вопросов, связанных с изучением метаболизма экзогенных и эндогенных соединений с помощью ферментов 1-й, 2-й и 3-й фаз метаболизма ксенобиотиков. Рассматриваются механизмы взаимодействия высокоактивных метаболитов этих соединений с макромолекулами клетки, а также изучение механизмов повреждения генов-мишеней для канцерогенов и мутагенов, приводящих к нарушению таких фундаментальных процессов, как клеточное деление, передача клеточного сигнала, апоптоз, межклеточные взаимодействия.

В курсе лекций приводятся данные о роли ядерных рецепторов, ксеносенсоров, в развитии многих токсических процессов, включая рак. Рассматриваются механизмы индукции основных ферментативных систем метаболизма ксенобиотиков, приводящих к развитию процессов детоксификации/токсификации в организме. Рассматриваются современные подходы к определению аддуктов химических соединений с ДНК, белками, а также способы их репарации. Изучаются механизмы передачи клеточных сигналов и их роль в развитии токсических процессов.

Место дисциплины в структуре образовательной программы

Дисциплина *Молекулярные механизмы токсических процессов* относится к дисциплинам по выбору ООП и изучается в 1 семестре.

Освоение дисциплины Молекулярные механизмы токсических процессов базируется на знаниях, умениях и навыках, сформированных у обучающихся по результатам изучения дисциплин биохимия, молекулярная биология и введение в хемоинформатику, и является необходимым для изучения следующих дисциплин и практик: биоорганическая химия, охрана окружающей среды, химические основы жизни, биологически активные соединения живых организмов, избранные главы органической химии, научно-исследовательская работа, а также специальные курсы профилей «биоорганическая химия».

2. Планируемые результаты обучения по дисциплине

Индикатор компетенции	Результаты обучения по дисциплине			
М-ОПК-1. Способен выполнять комплексные экспериментальные и расчетно-теоретические				
исследования в избранной области химии или смежных наук с использованием современных				
приборов, программного обеспечения и баз данных профессионального назначения				
М-ОПК-1.1.	- умеет искать информацию по структуре и метаболизму			
Использует	ксенобиотиков синтетического и природного происхождения;			
существующие и	- умеет анализировать, обобщать и систематизировать данные			
разрабатывает новые	научной литературы избранной области химии или смежных наук;			
методы получения и	и получения и - <i>имеет</i> опыт написания научного обзора для курсовой работы по			
характеризации веществ	молекулярной токсикологии;			

и материалов для	- знает основные теоретические положения молекулярной
решения задач в	токсикологии, а также свойства и реакционную способность
избранной области	метаболитов ксенобиотиков
химии или смежных	
наук	
М-ОПК-1.2.	- умеет использовать современное оборудование;программное
Использует	обеспечение и профессиональные базы данных для решения задач в
современное	области молекулярной токсикологии;
оборудование,	- умеет интерпретировать результаты собственных экспериментов,
программное	в том числе и компьютерных с использованием теоретических основ
обеспечение и	токсикологии.
профессиональные базы	
данных для решения	
задач в избранной	
области химии или	
смежных наук	
М-ОПК-1.3.	- умеет аргументировано объяснить собственные результаты с
Использует	использованием теоретических основ биохимии и молекулярной
современные расчетно-	биологии;
теоретические методы	- имеет опыт написания основной (практической) части курсовой
химии для решения	работы по молекулярной токсикологии.
профессиональных	
задач	

3. Трудоемкость дисциплины, вид учебной деятельности и форма промежуточной аттестации

Трудоемкость дисциплины – 3 з.е. (108 ч)

Форма промежуточной аттестации: – экзамен

No	Вин наятани изоти		Семестр	
710	Вид деятельности	1		
1	Лекции, ч	36		
2	Занятия в контактной форме, ч	40		
	из них	70		
3	из них аудиторных занятий, ч	36		
4	консультаций, час.	2		
5	промежуточная аттестация, ч	2		
6	Самостоятельная работа, час.			
7	Всего, ч	108		

4. Содержание дисциплины

- Раздел 1. Ферменты 1-й и 2-й фаз метаболизма ксенобиотиков
- Раздел 2. Механизмы образования аддуктов
- Раздел 3. Механизмы индуцированного и спонтанного мутагенеза
- Раздел 4. Окислительный стресс. Метилирование и репарация ДНК
- Раздел 5. Клеточные сигналы как критические мишени в молекулярной токсикологии
- Раздел 6. Механизмы апоптоза и тератогенеза, индуцированные клеточными сигналами и химическими соединениями.