Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет» (Новосибирский государственный университет, НГУ)

Факультет естественных наук

Согласовано Декан ФЕН Резников В.А. подпись «10» октября 2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ГЕНЕТИКА

направление подготовки: 06.03.01 Биология

направленность (профиль): Биология

Форма обучения: очная

Разработчики:	
к.б.н., доценткафедры цитологии и генетики ФЕН НГУ Баттулин Н. Р.	
к.б.н., доцент кафедры цитологии и генетики ФЕН НГУ Гусаченко А. М.	
к.б.н., старший преподаватель кафедры цитологии и генетики ФЕН НГУ Фишман В. С.	
Заведующий кафедрой цитологии и генетики ФЕН НГУ д.б.н., профессорРубцов Н.Б.	D.F.
Руководитель программы: д.б.н., профессор Шестопалова Л. В.	lecens

Новосибирск, 2020

Содержание

1.	Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы
2.	Место дисциплины в структуре образовательной программы
3.	Трудоемкость дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося
4.	Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий4
5.	Перечень учебной литературы
6.	Перечень учебно-методических материалов по самостоятельной работе обучающихся
7.	Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины
8.	Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине
9.	Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине
10.	Оценочные средства для проведения текущего контроля и промежуточной аттестации по дисциплине
Прі	иложение 1. Аннтотация рабочей программы8
Прі	иложение 2. Оценочтые средства по дисциплине

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Результаты освоения	В результате изучения дисциплины обучающиеся должны:		
образовательной программы(компетенции)	знать	уметь	владеть навыками
ОПК-7 Способность при-	-об основных по-	- демонстрирова-	- систематизации
менять базовые представ-	нятиях, законах и	ть базовые предс-	и обобщения пре-
ления об основных законо-	современных дос-	тавления об осно-	дставлений об ос-
мерностях и современных	тижениях генети-	вных закономер-	новных закономе-
достижениях генетики и	ки, селекции,	ностях и совреме-	рностях и совре-
селекции, о геномике,	геномики и	нных достиже-	менных достиже-
протеомике	протеомики	ниях генетики и	ниях генетики и
		селекции, о гено-	селекции, о гено-
		мике, протеомике	мике, протеомике

2. Место дисциплины в структуре образовательной программы

Дисциплины (практики), изучение которых необходимо для освоения дисциплины «Генетика»:

- Клеточная биология (митоз и мейоз, структура и функции хромосом, общая организация клеточных процессов);
- Молекулярная биология (молекулярные механизмы реализации генетической информации, репликация, репарация);
- Эмбриология (эмбриональное развитие насекомых и млекопитающих);
- Зоология беспозвоночных (разнообразие жизненных циклов животных);
- Ботаника (разнообразие жизненных циклов растений и грибов).

Дисциплины (практики), для изучения которых необходимо для освоения дисциплины «Генетика»:

- Эволюционное учение;
- В научно-исследовательской работе при выполнении ВКР по профилям специализаций: «Цитология и генетика», «Молекулярная биология и биотехнология», «Физиология».

3. Трудоемкость дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося

Трудоемкость дисциплины – 4 з.е. (144 ч) Форма промежуточной аттестации: зачет, экзамен

№	Вид деятельности	Семестр
1	Лекции, ч	45
2	Практические занятия, ч	-
3	Лабораторные занятия, ч	45
4	Занятия в контактной форме, ч, из них	96
5	из них аудиторных занятий, ч	90
6	в электронной форме, ч	-
7	консультаций, ч	4
8	промежуточная аттестация (зачет), ч	1
	промежуточная аттестация (экзамен), ч	1

9	Самостоятельная работа, ч	48
10	Всего, ч	144

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

5 семестр

Лекции (45 ч)

Лекции (45 ч)	
Наименование темы и их содержание	Объем,
Раздел 1. Генотип и фенотип. Молекулярные механизмы реализации генет	1
информации	
Понятие гена, его трансформация с развитием биологии. Неоднозначность определения термина ген. Понятия аллель, генотип и фенотип. Альтернативный сплайсинг, альтернативные промоторы, альтернативное полиаденилирование, вложенные гены, двунаправленные промоторы. Доказательства роли регуляторных элементов, влияющих на фенотип и находящихся вне кодирующей части гена. Соотношение доли функционально-значимых полиморфизмов в	2
кодирующих и некодирующих районах. Контроль инициации транскрипции. Конкуренция между РНК-полимеразой и нуклеосомными белками.	
Факторы ремоделинга хроматина, их роль в норме и в развитии патологий. Пионерские факторы. Модификации гистонов. Роль гистоновых модификаций в регуляции экспрессии генов, примеры гистоновых модификаций.	2
Контроль элонгации транскрипции: пауза РНК-полимеразы и её регуляция. Примеры регуляции клеточных процессов, связанных с регуляцией снятия РНК-полимеразы с паузы. Энхансеры: обнаружение первых энхансеров, способы поиска энхансеров, свойства энхансеров. Тканеспецифичность энхансеров. Роль энхансеров в эволюции	2
Трехмерная организация хроматина в ядре. Роль петлевой организации ДНК в регуляции генной экспрессии. Уровни трехмерной организации ДНК: хромосомные территории, компартменты, домены, петли. Эффект положения, его объяснения с точки зрения молекулярной генетики	2
Структура генома человека. Размер генома, структурные элементы генома и соотношение их количества и размеров. Повторенные элементы: происхождение, классификация и функциональное значение. Сегментные дупликации и их роль в эволюции. Псевдогены.	3
Понятие плоидности. Эволюционные преимущества и недостатки гаплоидности и диплоидности. Образование полиплоидов. Полногеномные дупликации и их последствия. Эндополиплоидия. Политенные хромосомы. Анэуплоидия. Моносомии, трисомии и другие хромосомные аномалии — причины возникновения и последствия.	2
Раздел 2. Молекулярные механизмы репликации, репарации, рекомбинаци	- 1И
Репликация, тайминг репликации, Repli-seq	2
Мейоз, комбинаторная изменчивость. Роль кроссинговера хромосом в мейозе. Нарушение расхождения хромосом в мейозе, анеуплоидии. Мейотический драйв и его эволюционные последствия	2
Репарация ДНК, принципы распознавания повреждений в ДНК. Репарация двуцепочечных разрывов ДНК. Метилирование ДНК и темпы	2

мутирования в различных динуклеотидах. Соматическая рекомбинация,	
потеря гетерозиготности. Репарация двуцепочечных разрывов ДНК в	
кроссинговере. Запрограммированные двухцепочечные разрывы в	
мейозе. Неаллельная рекомбинация. Особенности кроссиинговера в	
районах инверсий.Полногеномный анализ ассоциаций (GWAS).	
Неравновесие по сцеплению	
Закон гомологических рядов Н.И.Вавилова. Нонсенс опосредованный	1
распад мРНК (nonsense-mediated mRNA decay, NMD)	
Раздел 3. Другие механизмы наследования и реализации генетической	
информации	
Цитоплазматическая наследственность, гетероплазмия	2
Молекулярный механизм определения пола у дрозофилы и человека.	
Дозовая компенсация. Наследование признаков, сцепленных и	2
ограниченных (контролируемых) полом	
Геномный импринтинг. Активные генетические элементы, динамика их	2
распространения в популяциях. Эксперименты по спасению фенотипа	
Раздел 4. Совместное влияние нескольких аллелей на фенотипическое	
проявление признака	
Классификация генетических вариантов с точки зрения масштабов	
изменения последовательности ДНК. Понятие аллель. Понятия	
гомозигота, гетерозигота, гемизигота, компаунд гетерозигот.	
Классификация генетических вариантов с точки зрения их	2
функционального значения и фенотипического проявления. Понятие	2
дикий тип. Молекулярные механизмы проявления доминантных	
мутаций. Молекулярные механизмы проявления рецессивных мутаций.	
Молекулярные механизмы кодоминирования/неполного доминирования.	
Математическая формализация влияния неполного доминирования на	
фитнес организма. Сверхдоминирование. Уменьшение фитнеса	
гетерозиготы по сравнению с гомозиготами. Условия применимости	
понятий «доминантный» и «рецессивный» вариант: изменение типа	
проявления аллеля с доминантного на рецессивный при рассмотрении	
нового фенотипа и другие примеры. Летали. Определение, примеры,	2
распространенность, связь с естественным отбором. Понятия	
пенетрантности, экспрессивности и плейотропности. Антагонистичная	
плейотропность. Пенетрантность и плейотропность с точки зрения	
молекулярной генетики.	
Раздел 5. Некоторые методы генетики и геномики	
Методы секвенирование нуклеиновых кислот. Секвенирование по	
Сэнгеру, массовое параллельное секвенирование. Проблема повторов в	
массовом параллельном секвенировании и способы её решения.	2
Секвенирование третьего поколения на основе технологии Oxford	-
Nanopore	
DNAseI-seq, ChIP-seq, MNAse-seq, ATAC-seq.Анализ трехмерной	
организации ДНК (Hi-C)Метод STARR-seq для поиска энхансеров.	3
Система GAL4/UAS для исследования активности генов	3
Репортерные конструкции. Редактирование генома при помощи системы	
CRISPR/Cas9 Балансерные хромосомы и их применение в генетике.	2
Раздел 6. Основы количественной и статистической генетики	
Качественные и количественные признаки. Описание количественных	
признаков в виде распределений. Основные параметры	
распределений. Противоречия между наследованием количественных	2
признаков и «Менделевскими» расщеплениями. Математическое	

обоснование разрешения этих противоречий	
Полимерия и аддитивные эффекты аллелей. Математическое	
представление связи фенотипического признака и генотипа организма в	
форме линейного уравнения. Эпистаз и его формы. Примеры	
эпистатических взаимодействий. Взаимодействие аллелей.	2
Биологические механизмы, лежащие в основе взаимодействия аллелей и	
математическое описание взаимодействия. Тестирование	
взаимодействия между аллелями – общая идея.	
Взаимодействие генотипа и среды. Норма реакции. Аддитивный эффект	
генотипа и среды, математическая формализация аддитивного	
эффекта. Средовая и генотипическая дисперсия. Коэффициент	
наследуемости. Методы подсчета коэффициента наследуемости. Баланс	2
между величиной эффекта аллеля и частотой его	2
встречаемости. Использование коэффициента наследуемости. Уравнение	
селекционера. Оценка «потерянной наследуемости». Ограничения	
применимости коэффициента наследуемости.	
Раздел 7. Основы популяционной генетики	
Понятие панмиктической популяции, в которой выполняются условия	
Харди-Вайнберга. Понятие генофонда. Понятия инбридинга, инбредной	3
линии и гетерозиса. Изменение частоты аллелей в популяциях при	3
выполнении закона Харди-Вайнберга.	
Скорость элиминации аллелей под давлением отбора	1

Лабораторные работы (45 ч)

Лаоораторные расоты (43 ч)	Объем,
Содержание лабораторного занятия	
Изактичного на ТГ и ПГ	Ч
Инструктаж по ТБ и ПБ	
Лабораторная работа 1 «Биология развития дрозофилы». Разведение в	
культуре. Приёмы работы с дрозофилой.	3
Рассмотреть мух дикого типа, научиться различать самцов и самок.	
Ознакомиться с различными линиями дрозофилы. Определить отличия	
мутантного фенотипа от дикого.	
Лабораторная работа 2 «Наследование признаков, сцепленных с полом»,	
реципрокные скрещивания.	
Семинар. Понятия: аллель, дикий тип, гомо- и гетерозигота.	
Взаимодействие аллелей: доминирование, неполное доминирование,	2
кодоминирование. Функциональная классификация аллелей: сохранение	3
функции, потеря, снижение, приобретение функции.	
Решение задач по теме «Законы Менделя, Моно- и дигибридное	
скрещивание»	
Лабораторная работа 3 «Функциональный тест на аллелизм».	
Продолжение Лабораторной 2.	
Семинар. Число гамет, генотипов, фенотипов при полном и неполном	
доминировании. Множественный аллелизм.	3
Отклонения от Менделевских расщеплений. Понятия пенетрантности и	
экспрессивности, плейотропность. Летали, субвитали. Неаллельные	
взаимодействия генов. Решение задач.	
Лабораторная работа 4 «Построение генетических карт. Кроссинговер».	
Анализ F1 Лабораторной 2 на сцепление с полом, новое скрещивание на	
F2. Продолжение Лабораторной 3.	3
	3
Семинар. Отклонения от Менделевских расщеплений. Понятия	
эпистаза, комплементарного взаимодействия, полимерии. Решение задач	

по теме «Полигибридное скрещивание. Взаимодействие между генами». Контрольная по теме «Моно-дигибридное расщепление, летали, частоты	
генотипов»	
Лабораторная работа 5 «Получение гинандроморфов». Анализ F1 Лабораторной 3 «Тест на аллелизм». Сделать вывод об аллелизме и доминировании. Продолжение Лабораторной 2 и 4. Семинар. Понятия: мозаики, гинандроморфы. Линии с повышенной частотой потери хромосом. Решение задач на взаимодействие генов, аллелизм, сцепление с полом.	3
Анализ F1 Лабораторной 4. Поставить второе скрещивание (5 ст.). Продолжение Лабораторной 5. Анализ F2 Лабораторной 2 «Наследование признаков, сцепленных с полом». Анализ полученных расщеплений методом Хи-квадрат. Контрольная по теме «Полигибридное скрещивание. Взаимодействие между генами»	3
Анализировать F1 в Лабораторной 5 «Получение гинандроморфов». Гинандроморфов сдать преподавателю. Сфотографировать полученных мух. Продолжение Лабораторной 4. Семинар. Решение задач по теме «Признаки, сцепленные с полом, зависимые от пола, ограниченные полом. Генетическое определение пола».	3
Анализ F2 Лабораторной 5. Определить генотипы и подсчитать полученных мух, построить генетическую карту для 3- генов X-хромосомы. Посчитать коэффициент коинциденции.	3
Семинар. Коллоквиум по темам: взаимодействия аллелей, неаллельные взаимодействия. Энхансеры, гистоновые модификации, ТАДы, экспрессия генов. Решение задач на рекомбинацию и сцепление. Рекомбинация у гаплоидных организмов. Тетрадный анализ у нейроспоры	3
Лабораторная работа 6 «Направленная экспрессия Gal4-UAS» Семинар. Трансгенез у дрозофилы. Коллоквиум «Генетика определения пола у дрозофилы и млекопитающих. Дозовая компенсация у дрозофилы и млекопитающих» Решение задач по теме «Кроссинговер, сцепление»	3
Продолжение Лабораторной 6. Семинар. Коллоквиум 2. Молекулярный механизм кроссинговера и др. Решение задач по теме «Полиплоидия, анэуплоидия. Хромосомные перестройки», «Картирование генов с помощью хромосомных перестроек». Контрольная работа по теме «Рекомбинация»,	3
Анализ Лабораторной 6. «Направленная экспрессия Gal4-UAS» Семинар. Соматический кроссинговер. Хромосомные мутации. Механизмы. Решение задач по теме «Полиплоидия, анэуплоидия. Хромосомные перестройки», «Картирование летальных мутаций, определение группы сцепления с помощью доминантных и рецессивных маркеров».	3
Семинар. Молекулярно-генетические методы Коллоквиум. Контрольная работа по теме «Хромосомные перестройки»	3
Семинар. Популяционная генетика. Уравнение Харди-Вайнберга, панмиксия, инбридинг, отбор. Решения задач по теме	3

Семинар. Цитоплазматическая наследственность. Геномы митохондрий	
и хлоропластов. Гетероплазмия. Использование мт генома для	
установления клановой принадлежности.	3
Методы идентификации личности. STR Y и других хромосом. Решение	
задач	
Контрольная работа- допуск к экзамену	2

Самостоятельная работа студентов (48 ч)

Перечень занятий на СРС	Объем,
1. Изучение теоретического материала, не освещаемого на лекциях	30
2. Подготовка к текущему контролю	4
3. Подготовка к промежуточной аттестации	14

5. Перечень учебной литературы

5.10сновная литература

- 1. Гусаченко А. М., Волошина М. А. Малый генетический практикум: сборник задач / Новосиб. гос. ун-т. Новосибирск, 2018. 45 с. (50 экз.) ЭБСНГУ http://e-lib.nsu.ru/dsweb /Get/Resource-3688/page0000.pdf
- 2. Гусаченко А. М., Волошина М. А., Назарова Н. К. Малый генетический практикум: генетика Drosophila melanogaster Учебно-методическое пособие / Новосиб. гос. ун-т. Новосибирск, 2013. 39 с. (60 экз.).
- 3. Дымшиц, Григорий Моисеевич (биолог) . 25 иллюстрированных лекций по молекулярной биологии (https://e-lib.nsu.ru/reader/bookView.html?params=UmVzb3VyY2 UtMzQ5OQ /cGFnZTAwMQ)
- 4. Инге-Вечтомов С.Г. Генетика с основами селекции. М.: Н.-Л., 2010 (56 экз.).
- 5. Коряков Д.Е., Жимулев И.Ф. Хромосомы. Структура и функции. Новосибирск: Изд-во СО РАН. 2009. 258 с. (50 экз.)
- 6. Жимулев И.Ф. Общая и молекулярная генетика. Новосибирск, Сибирское университетское издательство, 2003. (140 экз.)
- 7. Клаг У., Каммингс М. Основы генетики. М.: Техносфера, 2007, (44 экз.).
- 8. Костерин О. Э. Основы генетики: учеб. пособие: в 2 ч. Новосибирск: Новосиб. гос. ун-т, 2015—16 (60 экз.) http://e-lib.nsu.ru/dsweb/Get/Resource-320/page001.pdf, http://e-lib.nsu.ru/dsweb/Get/Resource-2551/page00000.pdf

5.2 Дополнительная литература

- 9 Кребс Дж., Голдштейн Э., Килпатрик С. Гены по Льюину / для студентов, аспирантов и преподавателей / под ред. Д.В. Ребрикова и Н.Ю. Усман. М.: Лаборатория знаний, 2018, 919 с. (13 экз.).
- 10 Иванов В.И., Барышникова Н.В. и др. Генетика / Учебник для вузов. М.: ИКЦ Академкнига, 2007 (10 экз.)

6. Перечень учебно-методических материалов по самостоятельной работе обучающихся

- 11. Баттулин Н.Р., Фишман В.С. Презентации лекций курса Генетика для биологов ФЕН и медиков ИМПЗ https://drive.google.com/drive/folders/1R_8vNJLwRaqAOta-XyN5UyBfb8ohLFoU?usp=sharing
- 12. Гусаченко А.М. Электронный курс Генетика. Семинары. https://el.nsu.ru/course/view.php?id=1181

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Освоение дисциплины используются следующие ресурсы:

- электронная информационно-образовательная среда НГУ (ЭИОС);
- образовательные интернет-порталы;
- информационно-телекоммуникационная сеть Интернет.

Взаимодействие обучающегося с преподавателем (синхронное и (или) асинхронное) осуществляется через личный кабинет студента в ЭИОС, электронную почту, социальные сети.

7.1 Современные профессиональные базы данных

- Геномный браузер USCS: http://genome.ucsc.edu/
- Геномный браузер Ensembl: https://www.ensembl.org/index.html
- Эпигеномный браузер Encode: https://encodeproject.org/
- База данных OMIM: https://www.omim.org/

7.2 Информационные справочные системы

- Научная электронная библиотека https://www.elibrary.ru
- Электронный архив НГУ https://e-lib.nsu.ru
- Элементы большой науки https://elementy.ru

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

8.1 Перечень программного обеспечения

- OS Windows 7, 8, 10
- MicrosoftOfficeили Libre Office
- Интернет-браузер

8.2Информационные справочные системы

не используется

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Для реализации дисциплины «Генетика» используются специальные помещения:

- 1. Учебные аудитории для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля, промежуточной и итоговой аттестации;
- 2. Помещения для самостоятельной работы обучающихся.
- 3. Лаборатории учебные аудитории для проведения занятий семинарского типа и лабораторных работ;
- 4. Помещения для хранения и профилактического обслуживания учебного оборудования, мытья и стерилизации посуды, приготовления культуральной среды, термостатированная комната для культивирования дрозофилы (25° C).

Учебные аудитории укомплектованы специализированной мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории.

Лабораторные занятия обеспечены следующим оборудованием: вытяжной шкаф, микроскопы стереоскопические, термостатированная комната для культивирования дрозофилилы (25° С), морилки, баночки для сбрасывания мух, препаровальные иглы, перышки и кисточки, маркеры по стеклу, планшетки, 70% этиловый спирт, диэтиловый эфир, стеклянные стаканы с культуральной средой, лабораторные линии дрозофилы, мухи, специально отобранные для постановки скрещиваний.

Для проведения занятий семинарского типа и лабораторных предлагаются следующие наборы демонстрационного оборудования и учебно-наглядных пособий:

- сборник задач, решаемых на семинарских занятиях и самостоятельно,
- методическое пособие по лабораторным работам.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду НГУ.

Материально-техническое обеспечение образовательного процесса по дисциплине для обучающихся из числа лиц с ограниченными возможностями здоровья осуществляется согласно «Порядку организации и осуществления образовательной деятельности по образовательным программам для инвалидов и лиц с ограниченными возможностями здоровья в Новосибирском государственном университете».

10. Оценочные средства для проведения текущего контроля и промежуточной аттестации по дисциплине

Перечень результатов обучения по дисциплине «Генетика» и индикаторов их достижения представлен в виде знаний, умений и владений в Разделе 1.

10.1 Порядок проведения текущего контроля и промежуточной аттестации по дисциплине «Генетика»

Текущий контроль успеваемости

При проведении лабораторных работ текущий контроль по каждой задаче осуществляется через 2 недели от постановки эксперимента при появлении очередного поколения дрозофил. Контролируется совпадение ожидаемых и полученных результатов, обсуждаются возможные ошибки, итоги заносятся в лабораторный журнал.

Для проведения текущего контроля по семинарской части запланированы 3 контрольные работы, 3 устных коллоквиума, итоговая контрольная работа на допуск к экзамену.

Контрольные работы – решение задач - проводятся по пройденным на семинарах темам. Коллоквиумы проводятся в устной форме, обсуждаются вопросы из материала, прочитанного лектором, на 9, 10, 13 неделях занятий. Итоговая контрольная работа на допуск к экзамену проводится на 16 неделе занятий, в нее включаются базовые задачи по основным темам программы.

Промежуточная аттестация

По итогам лабораторных и семинарских занятий проводится зачет, который имеет два этапа: зачета по лабораторной работе и зачет по контрольным.

Критерии получения зачета по лабораторной работе:

- 1. Должным образом оформленный рабочий журнал.
- 2. Статистическая обработка полученных результатов.
- 3. Выводы по каждой лабораторной работе.
- 4. Умение объяснить полученные результаты и сформулировать нулевые гипотезы.
- 5. Умение объяснить необходимость использования в скрещиваниях определенных генетических инструментов.

На зачете проводится контрольная - допуск к экзамену, содержащая комплексные задачи и задачи базовой сложности по основным разделам. Для зачета по контрольным необходимо набрать по 50% баллов в заданиях 1 и 2 и 100 % в заданиях 3 и 4.

Освоение теоретической части оценивается на экзамене. Допуском к экзамену является зачет. Экзамен проводится в устной форме.

Код компетенции	Результат обучения по дисциплине	Оценочное средство
ОПК-7.1	Знать современные представления структуре гена и генома. Иметь представления о уровнях пространственной организации ДНК в ядре, строении хромосом. Иметь представление о транскрипции как о ключевом этапе реализации генетической информации. Знать различные эпигенетические механизмы контроля генной экспрессии. Знать строение и функции различных генетических элементов, таких как промоторы, энхансеры, мобильные элементы. Знать основные механизмы, объясняющие фенотипические проявления генетических вариантов. Знать молекулярные механизмы репликации, репарации, события мейоза и митоза, гаметогенеза, иметь представление об их влиянии на наследственную и ненаследственную изменчивость. Знать типы мутаций и иметь представление о механизмах их возникновения. Знать основы популяционной генетики. Иметь представление о методах генетики и геномики и модельных объектах используемых в современной и классической генетике.	Устные коллоквиумы, экзамен
ОПК-7.2	Уметь анализировать наследование признака, выдвигать гипотезы о наследовании, записывать генотипы. Уметь прогнозировать фенотипы потомков, обладая информацией о генотипах родителей и наследовании признака. Уметь оценивать генетическую структуру популяции. Уметь анализировать последствия мутаций в кодирующих и некодирующих областях геномов. Уметь пользоваться геномными браузерами, распространенными и эпигенетическими и медико-генетическими базами данных.	Контрольные работы, устные коллоквиумы, экзамен
ОПК-7.2	Владеть навыками дизайна генетических экспериментов.Владеть методами анализа геномных баз данных.Владеть навыками анализа родословной и методами интерпретации клинически-значимых мутаций в геноме человека.	Контрольные работы, устные коллоквиумы, экзамен

10.2 Описание критериев и шкал оценивания индикаторов достижения результатов обучения по дисциплине «Генетика»

Критерии оценивания результатов обучения	Шкала
Критерии оценивания результатов обучения	оценивания
Коллоквиум, Экзамен:	Отлично
– полнота понимания и изложения материала, умение приводить	
конкретные биологические примеры, подтверждающие общие	
генетические закономерности	
– точность и корректность применения терминов и понятий генетики,	
– наличие исчерпывающих ответов на дополнительные вопросы,	
– правильное решение предложенных задач по генетике	
— При изложении ответа на вопрос(ы) экзаменационного билета обучающийся мог	
допустить непринципиальные неточности.	
Коллоквиум, Экзамен:	Хорошо
– полнота понимания и изложения материала. Знание общих	
генетических закономерностей, без приведения конкретных примеров,	
их подтверждающих	
– точность и корректность применения терминов и понятий генетики,	
– наличие ответов на дополнительные вопросы,	
 правильное решение предложенных задач по генетике 	
— При изложении ответа на вопрос(ы) экзаменационного билета и дополнительные	
вопросы обучающийся мог допустить непринципиальные неточности.	X 7
Коллоквиум, Экзамен:	Удовлетворите
– Знание базовых генетических закономерностей, без приведения	льно
конкретных примеров, их подтверждающих; возможно не полное	
представлениями о достижениях молекулярной генетики последних 5-10 лет	
- неточности в применении терминов и понятий генетики, при	
условии понимания общей идеи терминов и недопущении грубых	
ошибок в терминологии	
- наличие ответов на часть (не менее половины) дополнительных	
вопросов,	
 – решение как минимум половины из предложенных задач по генетике. 	
Коллоквиум, Экзамен:	Неудовлетво-
- фрагментарное и недостаточное представление теоретического и	рительно
фактического материала, не подкрепленное ссылками на научную	
литературу и источники,	
– непонимание причинно-следственных связей,	
- отсутствие осмысленности, структурированности, логичности и	
аргументированности в изложении материала,	
– грубые ошибки в применении терминов и понятий генетики,	
– отсутствие ответов на дополнительные вопросы	
 – ошибки в решении половины или более половины предложенных задач. 	

10.3 Типовые контрольные задания и иные материалы, необходимые для оценки результатов обучения

Оценочные материалы по промежуточной аттестации (приложение 2), предназначенные для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС, хранятся на кафедре-разработчике РПД в печатном и электронном виде.

Примеры вопросовв контрольных работах

1. Моногибридное скрещивание. Определить, какие генотипы родителей дадут определенные расщепления.

- 2. Дигибридное скрещивание. По расщеплениям потомков и фенотипам родителей установить их генотипы.
- 3. Определить количество вариантов гамет определенного генотипа.
- 4. Определить вероятность рождения потомков с определенным генотипом у данных родителей.
- 5. Задача на взаимодействие неаллельных генов.

Аннотация рабочей программы

Дисциплина «Генетика» является частью одного из базовых циклов ООП по направлению подготовки 06.03.01 — Биология. Дисциплина реализуется на факультете естественных наук Федерального государственного автономного образовательного учреждения высшего образования «Новосибирского национального исследовательскогогосударственного университета» (НГУ) кафедрой цитологии и генетики в 5 семестре 3 курса.

Содержание дисциплины охватывает широкий круг вопросов, связанных с явлением наследственности и изменчивости, молекулярные и клеточные основы этих явлений, основные принципы геномных методов, а также важнейшие научные и технологические результаты, полученные в последние годы с применением геномных технологий.

Дисциплина нацелена на формирование общепрофессиональных компетенций ОПК-7.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции -45часов, лабораторные работы -45 часов, самостоятельная работа студента -48 часов, промежуточная аттестация (экзамен) -1 час.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости в форме контрольных работ и коллоквиумов, промежуточный контроль освоения программы лабораторных и практических занятий в форме зачета, контроль освоения теоретических знаний в форме экзамена.

Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 академических часов.

Оценочные средства по дисциплине

Вопросы для проведения контрольных работ для текущего контроля

Вопросы к коллоквиумам и экзамену

Коллоквиум 1. Механизмы реализации генетической информации

- 1. Понятие гена, его трансформация с развитием биологии. Неоднозначность определения термина ген. Понятия аллель, генотип и фенотип. Примеры.
- 2. Альтернативный сплайсинг, альтернативные промоторы, альтернативное полиаденилирование, вложенные гены, двунаправленные промоторы. Примеры
- 3. Доказательства роли регуляторных элементов, влияющих на фенотип и находящихся вне кодирующей части гена. Соотношение доли функционально-значимых полиморфизмов в кодирующих и некодирующих районах.
- 4. Контроль инициации транскрипции. Конкуренция между РНК-полимеразой и нуклеосомными белками.
- 5. Факторы ремоделинга хроматина, их роль в норме и в развитии патологий. Позиционирование нуклеосом в промоторах и ориджинах репликации. Пионерские факторы
- 6. Модификации гистонов. Роль гистоновых модификаций в регуляции экспрессии генов, примеры гистоновых модификаций. Наследование гистоновых меток в ходе клеточного деления
- 7. Метилирование ДНК как способ регуляции экспрессии генов.
- 8. Контроль элонгации транскрипции: пауза РНК-полимеразы и её регуляция. Примеры регуляции клеточных процессов, связанных с регуляцией снятия РНК-полимеразы с паузы.
- 9. Энхансеры: обнаружение первых энхансеров, способы поиска энхансеров, свойства энхансеров, примеры известных эхансеров. Различия и сходства между промотерами и энхансерами. Тканеспецифичность энхансеров.
- 10. Роль энхансеров в развитии генетических заболеваний и в эволюции организмов. Тонкая настройка последовательности энхансера для обеспечения оптимального уровня генной экспрессии.
- 11. Трехмерная организация хроматина в ядре. Уровни трехмерной организации ДНК: хромосомные территории, компартменты, домены, петли. Роль петлевой организации ДНК в регуляции генной экспрессии. Примеры.
- 12. Эффект положения, его открытие в экспериментах Т.Х. Мюллера и объяснения с точки зрения молекулярной генетики.
- 13. Структура генома человека. Размер генома, структурные элементы генома и соотношение их количества и размеров.
- 14. Повторенные элементы: происхождение, классификация и функциональное значение.
- 15. Сегментные дупликации и их роль в эволюции. Псевдогены.
- 16. Понятие плоидности. Эволюционные преимущества и недостатки гаплоидности и диплоидности.
- 17. Образование полиплоидов. Полногеномные дупликации и их последствия.
- 18. Эндополиплоидия. Политенные хромосомы.
- 19. Анэуплоидия. Моносомии, трисомии и другие хромосомные аномалии причины возникновения и последствия.

Часть II:

- 1. Репликация, тайминг репликации, Repli-seq
- 2. Мейоз, комбинаторная изменчивость

- 3. Роль кроссинговера хромосом в мейозе.
- 4. Нарушение расхождения хромосом в мейозе, анеуплоидии
- 5. Мейотический драйв и его эволюционные последствия
- 6. Репарация ДНК, принципы распознавания повреждений в ДНК
- 7. Репарация двуцепочечных разрывов ДНК
- 8. Метилирование ДНК и темпы мутирования в различных динуклеотидах
- 9. Соматическая рекомбинация, потеря гетерозиготности
- 10. Репарация двуцепочечных разрывов ДНК в кроссинговерее
- 11. Запрограммированные двухцепочечные разрывы в мейозе
- 12. Неаллельная рекомбинация
- 13. Особенности кроссиинговера в районах инверсий
- 14. Полногеномный анализ ассоциаций (GWAS)
- 15. Неравновесие по сцеплению
- 16. Закон гомологических рядов Н.И.Вавилова
- 17. Нонсенс опосредованный распад мРНК (nonsense-mediated mRNA decay, NMD)
- 18. Цитоплазматическая наследственность, гетероплазмия
- 19. Молекулярный механизм определения пола у дрозофилы.
- 20. Молекулярный механизм определения пола у человека.
- 21. Дозовая компенсация у дрозофилы.
- 22. Дозовая компенсация у человека.
- 23. Наследование признаков, сцепленных с полом, наследование признаков, ограниченных (контролируемых) полом
- 24. Геномный импринтинг
- 25. Активные генетические элементы, динамика их распространения в популяциях
- 26. Эксперименты по спасению фенотипа

Часть III. Совместное влияние нескольких аллелей на фенотипическое проявление признака.

- 1. Классификация генетических вариантов с точки зрения масштабов изменения последовательности ДНК. Понятие аллель. Понятия гомозигота, гетерозигота, гемизигота, компаунд гетерозигот. Примеры.
- 2. Классификация генетических вариантов с точки зрения их функционального значения и фенотипического проявления. Примеры. Понятие дикий тип.
- 3. Молекулярные механизмы проявления доминантных мутаций. Примеры.
- 4. Молекулярные механизмы проявления рецессивных мутаций. Примеры.
- 5. Молекулярные механизмы кодоминирования/неполного доминирования. Примеры.
- 6. Методы секвенирование нуклеиновых кислот. Секвенирование по Сэнгеру, массовое параллельное секвенирование. Проблема повторов в массовом параллельном секвенировании и способы её решения. Секвенирование третьего поколения на основе технологии Oxford Nanopore
- 7. Методы геномики: DNAseI-seq, ChIP-seq, MNAse-seq, ATAC-seq.
- 8. Методы геномики: анализ трехмерной организации ДНК (Hi-C)
- 9. Методы геномики: метод STARR-seq для поиска энхансеров. Система GAL4/UAS для исследования активности генов
- 10. Репортерные конструкции.
- 11. Методы генетики: репортерные конструкции
- 12. Методы генетики: редактирование генома при помощи системы CRISPR/Cas9
- 13. Методы генетики: балансерные хромосомы и их применение в генетике.
- 14. Математическая формализация влияния неполного доминирования на фитнес организма. Сверхдоминирование. Уменьшение фитнеса гетерозиготы по сравнению с гомозиготами. Примеры.

- 15. Условия применимости понятий «доминантный» и «рецессивный» вариант: изменение типа проявления аллеля с доминантного на рецессивный при рассмотрении нового фенотипа и другие примеры.
- 16. Летали. Определение, примеры, распространенность, связь с естественным отбором.
- 17. Понятия пенетрантности, экспрессивности и плейотропности. Антагонистичная плейотропность. Пенетрантность и плейотропность с точки зрения молекулярной генетики. Примеры.

Часть IV. Основы количественной и статистической генетики.

- 1. Качественные и количественные признаки. Описание количественных признаков в виде распределений. Основные параметры распределений.
- 2. Противоречия между наследованием количественных признаков и «Менделевскими» расщеплениями. Математическое обоснование разрешения этих противоречий.
- 3. Полимерия и аддитивные эффекты аллелей. Математическое представление связи фенотипического признака и генотипа организма в форме линейного уравнения.
- 4. Эпистаз и его формы. Примеры эпистатических взаимодействий.
- 5. Взаимодействие аллелей. Биологические механизмы, лежащие в основе взаимодействия аллелей и математическое описание взаимодействия. Тестирование взаимодействия между аллелями общая идея.
- 6. Взаимодействие генотипа и среды. Норма реакции. Аддитивный эффект генотипа и среды, математическая формализация аддитивного эффекта.
- 7. Средовая и генотипическая дисперсия. Коэффициент наследуемости. Методы подсчета коэффициента наследуемости. Баланс между величиной эффекта аллеля и частотой его встречаемости.
- 8. Использование коэффициента наследуемости. Уравнение селекционера. Оценка «потерянной наследуемости». Ограничения применимости коэффициента наследуемости.

Часть V Основы популяционной генетики.

- 1. Понятие панмиктической популяции, в которой выполняются условия Харди-Вайенберга. Понятие генофонда. Понятия инбридинга, инбредной линии и гетерозиса. Изменение частоты аллелей в популяциях при выполнении закона Харди-Вайенберга.
- 2. Скорость элиминации аллелей под давлением отбора
 - Часть VI-Методы генетических исследований (излагаются в темах различных лекций и семинаров).
- 1. Гибридологический метод. Анализирующее скрещивание.
- 2. Генеалогический метод.
- 3. Методы генетического скрининга рецессивных леталей
- 4. Метод моносомных линий.
- 5. Метод доминантных маркеров для локализации мутаций
- 6. Методы секвенирование нуклеиновых кислот. Секвенирование по Сэнгеру, массовое параллельное секвенирование. Проблема повторов в массовом параллельном секвенировании и способы её решения. Секвенирование третьего поколения на основе технологии Oxford Nanopore
- 7. Методы геномики: DNAseI-seq, ChIP-seq, MNAse-seq, ATAC-seq.
- 8. Методы геномики: анализ трехмерной организации ДНК (Hi-C)
- 9. Методы геномики: метод STARR-seq для поиска энхансеров. Система GAL4/UAS для исследования активности генов
- 10. Репортерные конструкции.
- 11. Методы генетики: репортерные конструкции

- 12. Методы генетики: редактирование генома и другие инструменты на основе технологии CRISPR/Cas9
- 13. Методы генетики: балансерные хромосомы и их применение в генетике.

Вопросы к зачету по темам:

- 1. Наследование признаков, сцепленных с полом
- 2. Функциональный тест на аллелизм
- 3. Построение генетической карты X-хромосомы по трем локусам.
- 4. Получение генетических мозаиков и гинандроморфов.
- 5. Направленная экспрессия генов в системе GAL4-UAS
- 6. Уметь объяснить специфику используемых линий дрозофилы, какие возможности лают эти линии.

Контрольная 1. Моно- полигибридное скрещивание.

- 1) Моногибридное скрещивание. Определить, какие генотипы родителей дадут определенные расщепления.
- 2) Дигибридное скрещивание. По расщеплениям потомков и фенотипам родителей установить их генотипы.
- 3) Определить количество вариантов гамет определенного генотипа.
- 4) Определить вероятность рождения потомков с определенным генотипом у данных родителей.
- 5) Задача на взаимодействие неаллельных генов.

Контрольная 2. Сцепление, кроссинговер.

- 1) По расщеплению в анализирующем скрещивании определить наличие или отсутствие сцепления, генетическое расстояние для 3-х признаков. Определить генотипы родителей, построить генетическую карту.
- 2) На основании данных генетической карты оценить вероятность рождения потомков с определенным генотипом по 3-м генам.

Контрольная 3. Хромосомные перестройки.

- 1) Локализовать ген на хромосоме методом перекрывающихся делеций.
- 2) Определить, какие хромосомные перестройки возникнут при негомологичной рекомбинации между указанными районами

Контрольная на допуск к экзамену

- 3адача на моно- ди-гибридные скрещивания, сцепление с полом. По расщеплениям потомков и фенотипам родителей установить их генотипы.
- 2) На основании данных генетической карты оценить вероятность рождения потомков с определенным генотипом по 3-м генам.
- 3) Используя уравнение Харди-Вайнберга определить частоты аллелей и генотипов в панмитической популяции по частоте встречаемости генотипа для моногенного признака.
- 4) Задача, обратная 3.