А.П. ЧУПАХИН

Ионные процессы в водных растворах. Часть 2. Осаждение, окислительно-восстановительные и обменные реакции
Учебное пособие

Новосибирск
2015
УДК 544.35

ББК Г245я73
Ч 920

Ч 920 Чупахин, А. П.

Рецензент
докт. хим. наук, проф. С. Н. Конченко

Пособие представляет собой вторую часть изложения одного из наиболее важных разделов курса «Общая и неорганическая химия». В него входит привязанное к практическим задачам изложение процессов в водных растворах: растворение – осаждение, окислительно-восстановительные и обменные реакции. Пособие предназначено для студентов 1-го курса геолого-геофизического факультета и будет полезным студентам факультета естественных наук (специальности химия и биология), медицинского факультета, а также магистрантам и аспирантам ГГФ, ФЕН, МФ, учителям химии и старшеклассникам естественнонаучного профиля и преподавателям различных естественнонаучных дисциплин, в которых используются понятия и представления ионных равновесий в водных растворах.

Учебное пособие разработано в рамках реализации Программы развития государственного образовательного учреждения высшего профессионального образования «Новосибирский национальный исследовательский университет» на 2009–2018 годы.

© Новосибирский государственный университет, 2015
© А. П. Чупахин, 2015
ОГЛАВЛЕНИЕ

Список основных обозначений и сокращений............................................. 6
Введение........................................................................................................... 8

Глава 1. Процессы растворения – осаждения............................................. 8
  1.1. Растворимость, растворение и осаждение электролитов.................... 8
    1.1.1. Растворимость и произведение растворимости............................. 8
    1.1.2. Классификация электролитов по растворимости.......................... 14
  1.2. Факторы, влияющие на растворимость............................................. 15
    1.2.1. Избыток и недостаток труднорастворимого электролита и растворимость.................................................. 15
    1.2.2. Влияние одноимённого иона на растворимость.............................. 17
    1.2.3. Растворимость и гидролиз ионов................................................. 18
    1.2.4. Влияние температуры.................................................................... 20
    1.2.5. Кинетические факторы................................................................. 21
  1.3. Расчёты с использованием произведения растворимости............... 21
  1.4. Критерии осаждения и растворения.................................................. 25
Вопросы для самопроверки........................................................................... 28
  1.5. Заключение............................................................................................ 31

Глава 2. Обменные реакции в водных растворах..................................... 32
  2.1. Основные понятия и определения..................................................... 32
    2.1.1. Понятие химической реакции....................................................... 32
    2.1.2. Уравнение химической реакции.................................................... 33
    2.1.3. Классификация реакций............................................................... 35
    2.1.4. Обменные реакции в водных растворах........................................ 38
  2.2. Оценка констант равновесия обменных реакций............................ 40
    2.2.1. Реакции нейтрализации............................................................... 40
    2.2.2. Реакции осаждения – растворения.............................................. 43
  2.3. Практически обратимые и необратимые реакции............................. 47
Вопросы для самопроверки........................................................................... 49
  2.4. Заключение............................................................................................ 51
Глава 3. Окислительно-восстановительные реакции (ОВР)........... 52

3.1. Окисление и восстановление: полуреакции, степень окисления.......................................................................................................................... 52

3.1.1. Окисление и восстановление........................................... 52
3.1.2. Полуреакции окисления и восстановления.................... 53
3.1.3. Степень окисления............................................................... 53
  3.1.3.1. Степень окисления и заряд атома............................... 53
  3.1.3.2. Правила определения степени окисления.................. 55
  3.1.3.3. Высшая, низшая, промежуточная степени окисления.......................................................... 55

3.1.4. Классификация ОВР......................................................... 56

3.2. Уравнивание ОВР.................................................................. 58
  3.2.1. Электронный баланс......................................................... 59
  3.2.2. Материальный баланс и электронейтральность............... 59
  3.2.3. Общий алгоритм уравнивания ОВР................................. 61
  3.2.4. Уравнивание через полуреакции..................................... 64

3.3. Гальванический элемент, электродный потенциал.............. 67
  3.3.1. Катод, анод, электродные процессы................................. 67
  3.3.2. Разность электродных потенциалов и энергия Гиббса..... 70
  3.3.3. Разность электродных потенциалов и ОВР..................... 70
  3.3.4. Представление стандартных электродных потенциалов в виде таблиц................................................................. 72
  3.3.5. Уравнение Нёрнста.......................................................... 72
  3.3.6. Концентрационный гальванический элемент.................. 74
  3.3.7. Электролиз.................................................................. 75
  3.3.8. Химические источники тока............................................. 77
    3.3.8.1. Аккумуляторы.......................................................... 78
    3.3.8.2. Топливные элементы............................................... 80

3.4. Применение электродных потенциалов для оценки направления ОВР................................................................. 81
  3.4.1. Направление протекания ОВР для стандартных состояний........................................................................... 82
3.4.2. Направление протекания ОВР для произвольных концентраций

3.4.3. Использование диаграмм Латимера для определения направления протекания ОВР

3.4.4. Вычисление $E^\circ$ через линейную комбинацию известных $E^\circ$

3.5. Распространённые окислители и восстановители

3.5.1. Сравнение силы окислителей и восстановителей

3.5.2. Распространённые окислители

3.5.3. Распространённые восстановители

3.5.4. Электрохимический ряд напряжений металлов

3.6. Влияние различных факторов на протекание ОВР

3.6.1. Возможность протекания параллельных ОВР

3.6.2. Влияние концентрации

3.6.2.1. Зависимость $\Delta rE$ от концентрации

3.6.2.2. Влияние концентрации на состав продуктов ОВР

3.6.3. Влияние избытка – недостатка реагентов

3.6.4. Влияние температуры

3.6.5. Влияние кислотности среды

3.6.5.1. Зависимость $\Delta rE$ от pH

3.6.5.2. Влияние pH на состав продуктов ОВР

3.6.6. Особенности протекания ОВР с участием трудно растворимых соединений

3.6.7. Влияние кинетических факторов

3.7. Определение продуктов ОВР

Вопросы для самопроверки

3.8. Заключение

Список литературы

Благодарности
Список сокращений и обозначений

Русский алфавит

в. – водный
г. – газообразный
ж. – жидкый
tв. – твёрдый
ОВ – окислительно-восстановительный
ОВР – окислительно-восстановительная реакция
ПР – произведение растворимости
ст. у. – стандартные условия
ХИТ – химический источник тока
ЭДС – электродвижущая сила (разность электродных потенциалов)

Латинский алфавит

[Aᵢ] – равновесная молярная концентрация вещества Аᵢ
aᵢ – активность i-го вещества; стехиометрический коэффициент исходного реагента
bᵢ – стехиометрический коэффициент продукта реакции
сᵢ = 1 моль/л – стандартная концентрация
c₀ – начальная концентрация
cᵢ – молярная концентрация i-го вещества
E – электродный потенциал
e – электрон; заряд электрона
E° – стандартный электродный потенциал
E₂₉₈° – стандартный электродный потенциал при 298 К
Eₐ – электродный потенциал анода
Eₜ – электродный потенциал катода
E₉ – электродный потенциал восстановителя
E₈ₘ – электродный потенциал окислителя
F = 96 500 Кл/моль – постоянная Фарадея
I – сила тока
K – константа равновесия
Kₐ – константа кислотности
Kₕ – константа основности
Kₐₚ – константа гидролиза
Kₜ – произведение растворимости
$K_n$ – константа нейтрализации
$K_w$ – ионное произведение воды
$k$ – электрохимический эквивалент
$L$ – растворимость
$M$ – молярная масса
$m$ – масса
$N_A = 6,02 \cdot 10^{23}$ моль$^{-1}$ – число Авогадро
$n$ – количество переносимых в ОВР электронов; количество молей
$Ox$ – окислитель; полуреакция восстановления окислителя
$pH$ – водородный показатель
$pOH$ – гидроксидный показатель
$Q$ – количество электричества
$R = 8,31$ (Дж/К·моль) – универсальная газовая постоянная
$Red$ – восстановитель; полуреакция окисления восстановителя
$T$ – температура
$t$ – время
$V$ – объём
$y_i$ – стехиометрический коэффициент i-го вещества
$z$ – количество переносимых электронов при электролизе

Греческий алфавит

$\gamma_i$ – коэффициент активности
$\Delta E$ – ЭДС (разность электродных потенциалов)
$\Delta_{r}E$ – разность электродных потенциалов реакции (ЭДС)
$\Delta_{r}E^\circ$ – разность стандартных электродных потенциалов реакции (стандартная ЭДС реакции)
$\Delta_fG^\circ$ – стандартная энергия Гиббса образования
$\Delta_rG$ – энергия Гиббса реакции
$\Delta_{r}G^\circ$ – стандартная энергия Гиббса реакции
$\Delta_fH^\circ$ – стандартная энталпия образования
$\Delta_rH^\circ$ – стандартная энталпия реакции
$\Delta_fS^\circ$ – стандартная энтропия реакции
$\Pi$ – произведение реакции
$\Pi_{Ox}$ – произведение полуреакции восстановления окислителя
$\Pi_{Red}$ – произведение полуреакции окисления восстановителя
ВВЕДЕНИЕ

Химические реакции в водных растворах наиболее распространены в природных биологических и геологических процессах и часто используются в химической промышленности. К самым распространённым процессам относятся кислотно-основные (перенос протонов) и окислительно-восстановительные (перенос электронов). Во второй части пособия* рассмотрены процессы растворения – осаждения, окислительно-восстановительные и обменные. Каждый раздел начинается с определения основных понятий. Для удобства читателя сами основные понятия выделены курсивом и полужирным шрифтом, а их формулировки – полужирным.

ГЛАВА 1. ПРОЦЕССЫ РАСТВОРЕНИЯ – ОСАЖДЕНИЯ

1.1. Растворимость, растворение и осаждение электролитов

1.1.1. Растворимость и произведение растворимости

Общая характеристика растворов и определение понятия растворимости приведены в ч. 1 пособия (далее – [1]), но для удобства читателя повторим последнее. Растворимость – это содержание (концентрация) растворённого вещества в насыщенном (равновесном) растворе. Растворимость – это максимально возможное содержание вещества в растворе при равновесии. В более широком понимании растворимость – способность вещества образовывать растворы с другими веществами: это вещество хорошо растворимо в воде, данное соединение плохо растворимо в бензоле и т. п.

По растворимости в воде электролиты (кислоты, основания, соли) можно разделить на две группы: хорошо растворимые и труднорастворимые – в «школьных» таблицах растворимости против первых ставят «+», а против вторых — «» или букву «н», т. е. «нерастворимые». Границу между ними можно условно провести по величине растворимости 0,01 – 001 моль/л, подробнее о ней ниже. К трудно растворимым относятся многие соли (сульфиды, большинство карбонатов, фосфатов, многие сульфаты, все силикаты,

кроме силикатов щелочных металлов, некоторые галогениды и другие) и гидроксиды металлов, кроме щелочных и щелочноземельных. Хорошо растворимы в воде все нитраты и нитриты, перхлораты, хлораты, многие сульфаты и галогениды, гидроксиды щелочных и щелочноземельных металлов и т. д. Из солей однозарядных катионов трудно растворимы галогениды Ag⁺, Cu⁺, Hg₂²⁺, из солей щелочноземельных металлов карбонаты и сульфаты. Соли щелочных металлов хорошо растворимы (за исключением некоторых солей крупных катионов, начиная с калия, с крупными, часто комплексными анионами).

Если такие трудно растворимые соединения являются продуктами обменных реакций в водных растворах, то они образуются в твёрдом состоянии – как принято говорить в химии, выпадают в осадок (рис. 1). Например,

\[
\text{BaCl}_2(\text{в.}) + \text{Na}_2\text{SO}_4(\text{в.}) \rightarrow \text{BaSO}_4(\text{тв.}) \downarrow + 2\text{NaCl}(\text{в.});
\]
\[
\text{AgNO}_3(\text{в.}) + \text{HCl}(\text{в.}) \rightarrow \text{AgCl}(\text{тв.}) \downarrow + \text{HNO}_3(\text{в.});
\]
\[
\text{Fe}_2(\text{SO}_4)_3(\text{в.}) + 6\text{KOH}(\text{в.}) \rightarrow 2\text{Fe(OH)}_3(\text{тв.}) \downarrow + 3\text{K}_2\text{SO}_4(\text{в.}).
\]

Рис. 1. Выпадение осадка BaSO₄ (показан белым) при обменной реакции BaCl₂(в.) + Na₂SO₄(в.)

Односторонние стрелки подчёркивают, что такие реакции протекают, как правило, необратимо. Все участники записанных процессов – сильные электролиты, и существуют в растворе в виде ионов (кроме находящихся «в осадке» твёрдых веществ). Поэтому запись уравнений в ионной форме (когда сильные хорошо растворимые электролиты записывают в виде ионов, а остальные вещества – в виде молекул) точнее отражает происходящие в растворе процессы:
Ba^{2+} + 2Cl^{-} + 2Na^+ + SO_{4}^{2-} \rightarrow BaSO_{4} + 2Na^+ + 2Cl^{-}

Из приведённого полного уравнения видно, что состояние Na^+ и Cl^- не изменилось; BaSO_{4} образуется и в том случае, если вместо BaCl_{2} взять любую другую хорошо растворимую соль бария, например, Ba(NO_{3})_{2}, а вместо Na_{2}SO_{4} любой хорошо растворимый сульфат (аммония, магния и т. п. или H_{2}SO_{4}). Поэтому с уравнением химического процесса можно обращаться, как с математическим – приведём «подобные». Заодно опустим индексы «в.». Получим сокращённую запись уравнения обменной реакции в ионной форме:

Ba^{2+} + SO_{4}^{2-} \rightarrow BaSO_{4}.

Это уравнение осаждения труднорастворимого сульфата бария из растворов, содержащих одновременно ионы Ba^{2+} и SO_{4}^{2-}. Какой бы малой ни была растворимость (для сульфата бария она составляет около 10^{-5} моль/л), абсолютно нерастворимых в воде электролитов не бывает, а значит, вопрос только в величине растворимости, так как нулевой она быть не может. Поэтому наряду с реакцией осаждения можно привести и обратную реакцию растворения:

BaSO_{4} \rightarrow Ba^{2+} + SO_{4}^{2-}.

При контакте твёрдого BaSO_{4} с его насыщенным раствором существует равновесие

BaSO_{4} = Ba^{2+} + SO_{4}^{2-},

при котором с равной скоростью происходят и растворение, и осаждение.

Равновесие между твёрдым веществом и его жидким раствором – гетерогенное. Описание гетерогенных равновесий подчиняется всем законам химической термодинамики, но имеет некоторые особенности по сравнению с гомогенными. При гетерогенных равновесиях некоторые участники находятся в фазах постоянного состава, активность которых не изменяется при протекании процесса. В рассматриваемом примере фаза постоянного состава – BaSO_{4}. Соответственно его концентрация не входит в выражение константы равновесия через соответствующие равновесные концентрации:

K_{L} = [Ba^{2+}][SO_{4}^{2-}].

Константа равновесия представляет собой произведение двух величин: равновесных концентраций катиона и аниона, выраженных в моль/л (так как за стандартное состояние растворённых ве-

* Напомним, что равновесные молярные концентрации обозначаются квадратными скобками; прочие (текущие, начальные) – буквой c.
ществ принято состояние в идеальном растворе с концентрацией 1 моль/л). Поэтому величина $K_L$ получила специальное название — произведение растворимости. В некоторых изданиях $K_L$ часто обозначается как $PR$, что может вносить некоторую путаницу, так как произведение реакции, $P$, совсем другое понятие химической термодинамики.

Понятие растворимости для электролитов имеет особенности, связанные с тем, что разные электролиты диссоциируют на разное количество ионов (в расчёте на формульную единицу). Для диссоциирующего на два иона $\text{BaSO}_4$ всё просто: растворимость, обозначаемая обычно как $L$ (иногда $S$), равна концентрации катионов и анионов:

$$L(\text{BaSO}_4) = [\text{Ba}^{2+}] = [\text{SO}_4^{2-}] = \sqrt{K_L}.$$ 

Если электролит диссоциирует более чем на два аниона, концентрации катиона и аниона не равны. Например, рассмотрим $\text{Fe(OH)}_2$.

$$\text{Fe(OH)}_2 = \text{Fe}^{2+} + 2\text{OH}^-.$$ 

$$K_L = [\text{Fe}^{2+}][\text{OH}^-]^2.$$ 

$$L = L(\text{Fe(OH)}_2) = [\text{Fe}^{2+}].$$ 

$$K_L = L \cdot (2L)^2 = 4L^3.$$ 

$$L = [\text{Fe}^{2+}] = \frac{3}{4} \sqrt{K_L}, [\text{OH}^-] = 2[\text{Fe}^{2+}].$$

В случае диссоциации на пять ионов, например, $\text{Ca}_3(\text{PO}_4)_2$, растворимость равна концентрации формульных единиц, в моль, на 1 л объёма раствора, и не равна концентрации ни катиона, ни аниона:

$$\text{Ca}_3(\text{PO}_4)_2 = 3\text{Ca}^{2+} + 2\text{PO}_4^{3-}.$$ 

$$K_L = [\text{Ca}^{2+}]^3[\text{PO}_4^{3-}]^2.$$ 

$$L = L(\text{Ca}_3(\text{PO}_4)_2) = 3[\text{Ca}^{2+}] = 2[\text{PO}_4^{3-}].$$ 

$$K_L = (3L)^3 \cdot (2L)^2 = 108L^5.$$ 

$$L = \frac{5}{108} \sqrt{K_L}.$$ 


*Произведение реакции $P$ — произведение концентраций участников равновесия (для газов парциальных давлений) в степенях, равных их стехиометрическим коэффициентам $y_i$, положительным для продуктов, от $y_1$ до $y_k$, и отрицательным для реагентов, от $y_m$ до $y_n$: $P = \frac{c_1^{y_1} \cdot c_2^{y_2} \cdot \ldots \cdot c_k^{y_k}}{c_m^{y_m} \cdot c_{m+1}^{y_{m+1}} \cdot \ldots \cdot c_n^{y_n}}$. Величина $P$ — безразмерная, как и константа равновесия, так как в формуле все концентрации безразмерные, $(c_i / c^o)^{y_i}$, где $c^o = 1$ моль/л.  

11
В общем, рекомендуем для каждого конкретного труднорастворимого электролита следующий алгоритм:

1. Записать уравнение равновесия между твёрдым электролитом и его насыщенным раствором.
2. Записать выражение для произведения растворимости, $K_L$, для этого конкретного равновесия.
3. Найти концентрации катиона и аниона (или растворимости $L$, не принципиально) через $K_L$.

В общем случае заряды катиона и аниона могут не совпадать, и электролит $M_xA_y$ диссоциирует на большее количество ионов, чем два на одну формульную единицу. Константа равновесия твёрдого труднорастворимого электролита с его раствором $K_L$ называется произведением растворимости:

$$(M_xA_y)_{тв} = xM^{\pi+} + yA^{\pi-},$$

$$K_L = (M^{\pi+})^x(A^{\pi-})^y = (xL)^x(yL)^y;$$

$$L = \frac{x+y}{K_L / x^x y^y}.$$

Величина произведения растворимости не даёт полного представления о растворимости соединения без количества ионов в формульной единице. Например, соединения МХ и MY₂ имеют одинаковые произведения растворимости $4 \cdot 10^{-24}$. Однако растворимость первого $2 \cdot 10^{-12}$ моль/л, а второго на 4 порядка выше, $1 \cdot 10^{-8}$ моль/л. И наоборот, если растворимость MA и MZ₃ одинаковы, например, $1 \cdot 10^{-5}$ моль/л, то $K_L(\text{MA}) = 1 \cdot 10^{-10}$, а $K_L(\text{MZ₃}) = 2,7 \cdot 10^{-19}$.

Как и любая константа равновесия, произведение растворимости экспоненциально зависит от $\Delta r G^\circ / T$:

$$K_L = \exp(-\Delta_r G^\circ / RT),$$

и имеет постоянное значение только при определённой температуре. По умолчанию это 298 К, температура ст. у. В зависимости от знака $\Delta r H^\circ$, для разных веществ константа $K_L$ как увеличивается, так и уменьшается с увеличением температуры. В большинстве случаев произведение растворимости (следовательно, и растворимость) растут с увеличением температуры, но известны и обратные примеры, например, Ca(OH)₂ и Li₂CO₃.

* Температурная область существования водных растворов при атмосферном давлении довольно узкая, ~100 градусов, поэтому обычно зависимостью $\Delta r H^\circ$ и $\Delta r S^\circ$ от температуры можно пренебречь.
Произведение растворимости, как и любая константа равновесия, может быть рассчитано из термодинамических данных. Для этого необходимы стандартные энтальпии образования и энтропии самого труднорастворимого соединения и образующих его ионов в растворённом виде. Большинство справочных данных по величинам произведений растворимости представляют собой именно рассчитанные подобным образом, а не экспериментально определённые величины. Поэтому не стоит удивляться расхождениям в значениях $K_L$ на один – два порядка, встречающимся в разных источниках: даже небольшие погрешности в $\Delta_r G^\circ$ в показателе экспоненты дают значительные отклонения в величине $K_L$.

Другая причина расхождений – отличия в экспериментально определяемых данных по растворимости. Некоторые труднорастворимые соединения, особенно гидроксиды металлов, приходят в равновесное состояние с раствором в течение длительного времени (старение осадков; в процессе старения могут происходить как процессы укрупнения кристаллов, так и изменения их строения). Вещества в неравновесных метастабильных состояниях имеют, как правило, более высокую растворимость; в некоторых случаях растворимость свежеосаждённых и состаренных осадков отличается на многие порядки.

Заслуживают отдельного комментария очень низкие величины произведений растворимости некоторых веществ. Например, для HgS $K_L = 10^{-52}$. Растворимость и концентрация $[\text{Hg}^{2+}] = [\text{S}^{2-}] = 10^{-26}$ моль/л. Получается, что в 1 л насыщенного раствора HgS находится $(10^{-26} \text{ моль}) \times (6 \cdot 10^{23} \text{ моль}^{-1}) = 0,006$ иона Hg$^{2+}$ и 0,006 иона S$^{2-}$? Нет ли здесь противоречия?

Противоречия нет, вспомним, что есть два подхода, два «языка» описания химических процессов. В терминах термодинамики есть только системы, состояния и процессы, без рассмотрения какоголибо внутреннего строения термодинамических систем. Значения термодинамических параметров и функций непрерывны, хотя реальные системы состоят из дискретных атомов и молекул. Величина константы равновесия $10^{-52}$ (да хоть бы и $10^{-152}$) характеризует соответствующую низкую равновесную концентрацию, изменяющуюся непрерывно, как и константа равновесия – никаких запретов на величину константы равновесия в термодинамике нет; если стехиометрические коэффициенты в уравнении соответствующего процесса конечны, то допустимые значения $0 < K < \infty$. В терминах
атомно-молекулярного подхода величину концентрации 0,006 моль/л следует понимать статистически: в среднем в 1 л раствора содержится 0,006 пар ионов, а в 1 000 л 6 пар ионов, и т. п.

1.1.2. Классификация электролитов по растворимости

Для труднорастворимых соединений насыщенные растворы весьма разбавленные, их концентрации не превышают 0,01 моль/л (например, для таких широко известных «нерастворимых» веществ, как AgCl и BaSO₄ концентрация насыщенных растворов ~10⁻⁵ моль/л). Такие растворы с высокой степенью точности идеальные, и нет необходимости использовать активности вместо концентраций.

Для хорошо растворимых электролитов, например, NaCl, константу равновесия (в случае идеальности насыщенного раствора) можно было бы также выразить через концентрации, но вследствие большой концентрации насыщенный раствор NaCl существенно неидеален, и для него \( K_L \not= [Na^+][Cl^-] \); \( K_L = a(Na^+):a(Cl^-) \), где \( a(Na^+) \) и \( a(Cl^-) \) – активности ионов Na⁺ и Cl⁻ соответственно. Для хорошо растворимых электролитов константа равновесия их твёрдой фазы с раствором не равна произведению концентраций, и не называется так. Данные по растворимости для хорошо растворимых веществ обычно приводятся в виде растворимостей (выраженных не обязательно в моль/л, см. о разных способах выражения концентрации в [1]), тогда как данные по растворимости труднорастворимых электролитов принято приводить именно в виде произведений растворимости. Их величины варьируются от 10⁻³ для AgCH₃COO до 10⁻⁵² для HgS и менее.

Существует третья, пограничная группа электролитов с растворимостью в воде 0,01–0,1 моль/л (в «школьных» таблицах растворимости их обычно помечают как «м» – малорастворимые). Данные по их растворимости могут фигурировать в различных справочных изданиях и базах данных как в том, так и в другом варианте.

---

*Активность – величина, пропорциональная концентрации: \( a_i = \gamma_i c_i \), где \( \gamma_i \) – коэффициент активности \( i \)-го растворённого вещества. В общем случае \( \gamma_i \) зависит от концентрации растворённых веществ и температуры. Для идеальных растворов \( \gamma_i = 1 \).
1.2. Факторы, влияющие на растворимость

1.2.1. Избыток и недостаток труднорастворимого электролита и растворимость

На положение равновесия между труднорастворимым электролитом и его раствором можно влиять, изменяя внешние условия. Гетерогенное равновесие возможно только при наличии избытка твёрдой фазы. Поясним это рассуждение конкретным примером.

Пусть в системе находится 0,1 моль BaSO\textsubscript{4} ($K_L = 1 \cdot 10^{-10}$) и 1 л воды. Будет ли меняться, и если да, то как, концентрация ионов в растворе при добавлении в систему воды?

Не стоит спешить с ответом! Разумеется, константа $K_L$, как и любая другая константа равновесия, не зависит от концентрации участников равновесия. Соответственно не зависит от количества добавляемой воды и растворимость BaSO\textsubscript{4}:

$$L(BaSO_4) = [Ba^{2+}] = [SO_4^{2-}] = \sqrt{K_L} = 10^{-5} \text{ моль/л.}$$

Такая концентрация была в исходном состоянии системы, с 1 л воды, такая же сохранится и с двумя, десятью, 1 000 л воды... А если взять 1 000 000 л? Для такого количества 10\textsuperscript{-5} М раствора потребуется (10\textsuperscript{-5} моль/л)\times10\textsuperscript{6} л = 10 моль BaSO\textsubscript{4} – но по условию задачи в системе есть только 0,1 моль, в 100 раз меньше. Итак, при $V^* > 10 000$ л воды в системе весь BaSO\textsubscript{4} будет находиться в растворённом состоянии, $[Ba^{2+}] = [SO_4^{2-}] = 0,1 \text{ моль/} V < L$. Например, при $V = 10^6$ л $[Ba^{2+}] = [SO_4^{2-}] = 10^{-7} \text{ моль/л} < L$. Величина $V^*$ разделяет два качественно разных состояния системы:

1) При $V^* < 10 000$ л имеется равновесие $BaSO_4 = Ba^{2+} + SO_4^{2-}$, $[Ba^{2+}] = [SO_4^{2-}] = L$.

2) При $V^* > 10 000$ л равновесие не может быть достигнуто по причине нехватки твёрдого компонента, и его концентрация в растворе равна $n/V = (0,1 \text{ моль})/V(л) < L$.

Читатели могут самостоятельно разобрать похожий пример: как меняется концентрация в системе, состоящей из переменного количества BaSO\textsubscript{4}, $m$ (г) и 1 л воды при изменении величины $m$. На рис. 2 графически представлены зависимости концентрации ионов от объёма растворителя при фиксированном количестве твёрдого компонента ($a$) и от количества твёрдого компонента при фиксированном объёме растворителя ($b$).
Рис. 2. Зависимость концентрации ионов бария от объёма воды (для навески $10^{-5}$ моль = $2,33\cdot10^{-5}$ г BaSO$_4$ (а), и от массы навески для объёма воды 1 л (б).

Если к системе, содержащей 0,1 моль BaSO$_4$ и 1 л воды, т. е. в состоянии твёрдый компонент + насыщенный раствор, добавлять сколько угодно твёрдого компонента, его концентрация в растворе не изменится – величина избытка твёрдого компонента не влияет на положение равновесия (количество компонентов в фазах постоянного состава на положение равновесия не влияет).
1.2.2. Влияние одноименного иона на растворимость

На положение равновесия осадок электролита = его раствор (как и для любых других равновесий) можно влиять, изменяя концентрации участников равновесия в фазе переменного состава, т. е. в растворе. Поясним это положение на конкретном примере. Рассмотрим систему, содержащую 0,1 моль BaSO₄ и 1 л воды, \([\text{Ba}^{2+}] = [\text{SO}_4^{2-}] = L = 10^{-5}\) моль/л. Если добавить в раствор сульфат-ионы (в виде растворимой соли, например, Na₂SO₄), то по принципу Ле Шателье положение равновесия BaSO₄ = Ba²⁺ + SO₄²⁻ должно сместиться влево, в сторону исходного реагента. Концентрация [Ba²⁺] уменьшится — иначе говоря, увеличится полнота его осаждения. Этот эффект называется высыпанием и применяется как в лабораторной практике, так и в технологии, например, для более полного осаждения из растворов радиоактивных веществ (утилзировать твёрдые радиоактивные отходы проще, чем разбавленные растворы).

Например, для SrSO₄ (\(K_L = 2 \cdot 10^{-7}\)) концентрация стронция в насыщенном растворе \([\text{Sr}^{2+}] = 4,47 \cdot 10^{-4}\) моль/л = 0,082 г/л. Определим \([\text{Sr}^{2+}]\) в 0,1 М растворе Na₂SO₄ (эту величину можно назвать растворимостью SrSO₄ в 0,1 М растворе Na₂SO₄). Имеем два процесса:

\[
\text{Na}_2\text{SO}_4 \rightarrow 2\text{Na}^+ + \text{SO}_4^{2-};
\]

0,1 - -

- 0,2 0,1 + x

\text{SrSO}_4 = \text{Sr}^{2+} + \text{SO}_4^{2-}.

x 0,1 + x

\(K_L = [\text{Sr}^{2+}][\text{SO}_4^{2-}] = x(0,1 + x).\)

Даже без добавки сульфата в раствор концентрация катионов стронция была \(~10^{-4} << 0,1\) моль/л, а в присутствии сульфата должна быть ещё меньше, так что совершенно допустимо пренебречь \(x\) по сравнению с 0,1:

\(K_L = 2 \cdot 10^{-7} \approx x \cdot 0,1\) и \(x = [\text{Sr}^{2+}] = 2 \cdot 10^{-6}\) моль/л.

Растворимость SrSO₄ в 0,1 М сульфате натрия на два порядка меньше, чем в воде. Когда речь идёт об извлечении из растворов радиоактивного изотопа стронция, это весьма существенно.

Эффект влияния одноимённого иона на растворимость распространяется и на катион: растворимость SrSO₄ в растворах растворимых солей стронция, например, в SrCl₂, понижается аналогичным образом.
1.2.3. Растворимость и гидролиз ионов

Ионы, подвергающиеся в водных растворах гидролизу, будут гидролизоваться и в том случае, если они попали в раствор из трудно-растворимого электролита и находятся в равновесии с его осадком. Более того, концентрация таких ионов обычно очень низкая, а чем ниже концентрация, тем выше степень гидролиза. Это следует иметь в виду при расчёте равновесных концентраций труднорастворимых сульфидов, карбонатов и других солей слабых кислот и любых труднорастворимых гидроксидов (хорошо растворимы гидроксиды металлов, образующих сильные основания, катионы которых не гидролизуются). Расчёты равновесных концентраций в растворах труднорастворимых электролитов с учётом гидролиза ионов выходят за рамки представленного пособия, но их подробное рассмотрение можно найти в главах VI и VII приведённой в списке литературы монографии Дж. Батлера*. Здесь мы приведём лишь общий подход к рассмотрению таких систем.

Составим систему уравнений для расчёта равновесных концентраций всех частиц в насыщенном растворе CaCO₃ – соли сильного основания и слабой угольной кислоты. Первый шаг при рассмотрении любых равновесий – выделить все независимые равновесия и определить количество известных и неизвестных концентраций (см. общий подход к расчёту концентраций для растворов многоосновных кислот в [1], раздел 4.1, с. 77–78) – он применим и к рассмотрению равновесий с осадками). Первое уравнение – равновесие CaCO₃(тв.) с его насыщенным раствором. Ещё два уравнения – две ступени гидролиза карбонат-иона (катион кальция не гидролизуется).

\[
\begin{align*}
CaCO_3(тв.) &= Ca^{2+} + CO_3^{2-}; \\
CO_3^{2-} + H_2O &= HCO_3^- + OH^-; \\
HCO_3^- + H_2O &= \{H_2CO_3\} + OH^- \text{ или} \\
HCO_3^- + H_2O &= H_2O + CO_2 + OH^-.
\end{align*}
\]

Всего в растворе (фаза переменного состава) имеется пять компонентов и соответственно пять неизвестных концентраций: [Ca²⁺], [CO₃²⁻], [HCO₃⁻], [CO₂], [OH⁻]. Раствор щелочной, поэтому концентрацией [H⁺] можно пренебречь (однако если реальный расчёт покажет величину

Составление уравнения материального баланса для гетерогенного равновесия имеет особенности по сравнению с рассмотренными в [1] гомогенными равновесиями. В рассматриваемом примере отсутствуют начальные концентрации. В раствор перешла некоторая часть исходного твёрдого карбоната. Весь кальций находится в растворе в виде не гидролизуемого $Ca^{2+}$. А карбонат-ион гидролизуется, см. уравнения (2) и (3), и находится в растворе в трёх разных формах: $CO_3^{2-}$, $HCO_3^-$, $CO_2$. Поскольку источником всех карбонатных форм является исходный твёрдый $CaCO_3$, их общее количество (рис. 3) равно количеству находящегося в растворе $Ca^{2+}$. Следовательно, и суммарная концентрация карбонатных форм равна $[Ca^{2+}]$: $[CO_3^{2-}] + [HCO_3^-] + [CO_2] = [Ca^{2+}]$. (4')

Недостающее пятое уравнение – это условие электронейтральности: $2[Ca^{2+}] = 2[CO_3^{2-}] + [HCO_3^-] + [OH^-]$. (5')

Рис. 3. Гидролиз в насыщенном растворе $CaCO_3$: криволинейным треугольником условно показана растворяющаяся часть осадка.

Если известны величины констант (а они известны: $K_L$ – справочная величина, константы гидролиза $K_{h1}$ и $K_{h2}$ легко находятся из справочных величин, констант кислотности $K_{a1}$ и $K_{a2}$ для угольной кислоты), то решая систему из пяти уравнений (1')–(5') с пятью неизвестными, находим эти пять равновесных концентраций всех частиц, присутствующих в насыщенном растворе $CaCO_3$ с учётом гидролиза карбонат-иона.

$pH$, близкую к нейтральному, расчёт придётся повторить с учётом $[H^+]$ и уравнения автопротолиза воды с привлечением константы $K_W$, см. раздел 4.3 в [1]. Для трёх независимых равновесий выразим их константы через соответствующие равновесные концентрации и получим три уравнения для составляемой системы:

$K_L = [Ca^{2+}][CO_3^{2-}]$; (1')

$K_{h1} = [HCO_3^-][OH^-]/[CO_3^{2-}]$; (2')

$K_{h2} = [CO_2][OH^-]/[HCO_3^-]$. (3')
Аналогично решаются задачи о расчёте равновесных концентраций труднорастворимых электролитов с учётом гидролиза катиона. Отметим, что на практике в случае труднорастворимых гидроксидов металлов для многих из них задача усложняется наличием процессов комплексообразования (гидроксокомплексы [M(OH)\textsubscript{m}]\textsuperscript{n–}, например, [Al(OH)\textsubscript{4}]\textsuperscript{–}, [Sn(OH)\textsubscript{6}]\textsuperscript{2–} и т. п.). Количество компонентов и уравнений при этом увеличивается, но общий подход к решению задач по расчёту равновесных концентраций в растворах остаётся без изменений.

1.2.4. Влияние температуры

Для большинства и хорошо растворимых, и труднорастворимых электролитов растворимость увеличивается с ростом температуры, так как энтальпии их растворения положительны. Но есть и обратные примеры — Li\textsubscript{2}CO\textsubscript{3}, CaCO\textsubscript{3}, Mg(OH)\textsubscript{2}. Для некоторых веществ зависимость растворимости от \( T \) имеет немонотонный характер. Так, для CaSO\textsubscript{4} растворимость в воде имеет максимальные значения (2,05–2,11 г/л) в пределах температур 20–50 °С, при температурах выше и ниже указанных его растворимость резко снижается.

Температурная зависимость растворимости используется для очистки хорошо растворимых веществ перекристаллизацией. Загрязнённое вещество растворяют при повышенной температуре так, чтобы получить раствор, близкий к насыщенному, затем охлаждают. При кристаллизации (особенно медленной) растут кристаллы, не содержащие нерастворимые примеси — они находятся в виде гетерогенных частиц. Очистку от растворимых примесей перекристаллизацией осуществлять сложнее, так как они могут входить в кристаллическую решётку и захватываться в качестве включений или примесных дефектов. Всё же обычно удаётся снизить и количество растворимых примесей при кристаллизации, особенно если зависимость растворимости основного вещества от \( T \) более «крутия», чем у примесей.

Обратная зависимость растворимости от \( T \) (например, для CaCO\textsubscript{3}) способствует образованию накипи на теплообменных поверхностях, что является серьёзной проблемой при эксплуатации котлов, бойлеров, трубопроводов.
1.2.5. Кинетические факторы

Растворение и осаждение – гетерогенные процессы, для которых равновесие обычно устанавливается медленно, поэтому влияние кинетических факторов существенно. Скорость растворения зависит от таких свойств кристаллов, как их размер (соотношение поверхность – объём), огранка, дефектность, и от внешних факторов, определяющих параметры массо- и теплопереноса. В протекании осаждения (кристаллизации), кроме процессов переноса, важную роль играет зародышеобразование – появление первичных кристалликов. Процесс зарождения крайне чувствителен к наличию даже очень малого количества примесей. Возможны два предельных случая – рост единичного монокристалла или массовая кристаллизация из раствора, т.е. быстрое, практически мгновенное выпадение в осадок очень мелких кристаллов.

Растворимость и произведение растворимости – равновесные величины, которые не зависят от кинетики любых процессов. Но проблема состоит в том, что для многих труднорастворимых электролитов (гидроксидов, сульфидов и других) состояния равновесия трудно достигнуть. Часто экспериментально определяемая растворимость свежеосаждённых осадков значительно – на многие порядки – выше, чем состаренных – выдержанных длительное время. Старение осадков – процесс изменения их свойств, происходящих с течением времени в контакте с маточным раствором. Эти изменения – укрупнение кристаллов, уменьшение их общей поверхности, перераспределение примесей и другие – происходят вследствие рекристаллизации, а нередко и изменения строения кристаллической фазы. Часто свежеосаждённые осадки бывают некристаллическими, аморфными. Вследствие всего этого в справочных данных по произведениям растворимости таких веществ встречаются большие, на многие порядки, расхождения. Более того, свежеосаждённые и состаренные осадки одного и того же соединения могут отличаться не только по растворимости, но и по реакционной способности.

1.3. Расчёты с использованием произведения растворимости

Как и для любых других равновесий, для равновесий с участием труднорастворимых электролитов можно разделить задачи на прямые и обратные. Прямые – когда известна константа равновесия (в
данном случае – произведение растворимости $K_L$, и требуется определить равновесные концентрации компонентов (в данном случае – растворимость и концентрации ионов в растворе). Обратные – когда известна растворимость (или концентрации ионов), и нужно определить произведение растворимости. Разумеется, задачи могут быть комбинированными, но любую из них можно разбить на комбинацию прямых и обратных. Рассмотрим решение таких задач на конкретных примерах.

**Пример 1.** Найти растворимость бромида серебра и концентрации ионов в насыщенном растворе из справочных данных.

**Решение:** Простейшая прямая задача. Из справочных данных произведение растворимости $K_L$(AgBr) = $5 \cdot 10^{-13}$. Запишем процесс равновесия твёрдого AgBr с его насыщенным раствором:

$$AgBr = Ag^+ + Br^-.$$  
$$K_L(AgBr) = [Ag^+][Br^-].$$  
$$L = L(AgBr) = [Ag^+] = [Br^-] = \sqrt{K_L} = \sqrt{5 \cdot 10^{-12}} = 7,07 \cdot 10^{-7} \text{моль/л}.$$

Не забудем, откуда размерность растворимости «волшебным» образом составляет именно моль/л?

Разумеется, это следствие выбора **стандартного состояния** для растворённых веществ: состояние в виде идеального раствора при концентрации 1 моль/л.

**Ответ:** $L = [Ag^+] = [Br^-] = 7,1 \cdot 10^{-7} \text{моль/л}.$

**Пример 2.** Найти растворимость Mg(OH)$_2$ и $pH$ его насыщенного раствора, если $K_L$(Mg(OH)$_2$) = $4 \cdot 10^{-12}$.

**Решение:** Прямая задача. Запишем процесс равновесия твёрдого Mg(OH)$_2$ с его насыщенным раствором:

$$Mg(OH)_2 = Mg^{2+} + 2OH^-.$$  
$$K_L = [Mg^{2+}][OH^-]^2 = L \cdot (2L)^2 = 4L^3.$$  
$$L = [Mg^{2+}] = \frac{3 \sqrt{K_L}}{4} = 1 \cdot 10^{-4} \text{моль/л}.$$  
$$[OH^-] = 2[Mg^{2+}] = 2 \cdot 10^{-4} \text{моль/л}; \quad pH = 10,3.$$

**Ответ:** $L = [Mg^{2+}] = 1 \cdot 10^{-4} \text{моль/л}; \quad [OH^-] = 2 \cdot 10^{-4} \text{моль/л}; \quad pH = 10,3.$

**Пример 3.** Растворимость CaF$_2$ составляет 0,017 г/л. Найти его произведение растворимости.
Решение: Простейшая обратная задача. Запишем процесс равновесия твёрдого CaF\textsubscript{2} с его насыщенным раствором:

\[
\text{CaF}_2 = \text{Ca}^{2+} + 2\text{F}^{-}.
\]

\[
K_L = [\text{Ca}^{2+}][\text{F}^{-}]^2 = L \cdot (2L)^2 = 4L^3.
\]

Не забудем перевести г/л в моль/л – равновесные концентрации в выражениях для констант равновесия всегда выражаются в моль/л:

\[
L = \frac{0,017 \text{ г/л}}{78 \text{ г/моль}} = 2,18 \cdot 10^{-4} \text{ моль/л}, \quad K_L = 4,1 \cdot 10^{-11}.
\]

Ответ: \(K_L = 4,1 \cdot 10^{-11}\).

Пример 4. Найти растворимость CsReO\textsubscript{4} \((K_L = 4 \cdot 10^{-4})\) в воде и в 0,03 М растворе NaReO\textsubscript{4}.

Решение: Прямая задача. Растворимость в воде

\[
L = \sqrt{K_L} = \sqrt{4 \cdot 10^{-4}} = 0,02 \text{ моль/л}.
\]

Для определения растворимости в NaReO\textsubscript{4} нужно рассматривать оба процесса:

\[
\text{NaReO}_4 \rightarrow \text{Na}^+ + \text{ReO}_4^-;
\]

\[
0,03 - -
\]

\[
- 0,03 0,03 + x
\]

CsReO\textsubscript{4} = Cs\textsuperscript{+} + ReO\textsubscript{4}\textsuperscript{−}.

\[
x 0,03 + x
\]

\[
K_L = [\text{Cs}^+][\text{ReO}_4^-] = x(0,03 + x) = 4 \cdot 10^{-4}.
\]

В отличие от рассмотренного в разделе 1.2.2 примера с растворимостью SrSO\textsubscript{4} в растворе Na\textsubscript{2}SO\textsubscript{4}, где концентрация общего иона – сульфата – на много порядков превышала растворимость SrSO\textsubscript{4} в воде, здесь растворимость NaReO\textsubscript{4} в воде и концентрация общего иона – ReO\textsubscript{4}\textsuperscript{−} – одного порядка, \(\sim 10^{-2}\). Пренебрегать \(x\) относительно 0,03 нельзя, нужно решать квадратное уравнение. Получаем \(x = [\text{Cs}^+] = 0,01 \text{ моль/л}, \quad [\text{ReO}_4^-] = 0,04 \text{ моль/л}\). В отличие от SrSO\textsubscript{4}, для которого эффект высаливания составляет несколько порядков, для более растворимого CsReO\textsubscript{4} уменьшение растворимости в присутствии общего иона составило только несколько раз.

Ответ: В воде растворимость \(L = [\text{Cs}^+] = [\text{ReO}_4^-] = 0,02 \text{ моль/л},\) в 0,01 М растворе NaReO\textsubscript{4} \(L = [\text{Cs}^+] = 0,01 \text{ моль/л}\.\)
Пример 5. Растворимость соли МХ при 27 °C равна 2·10^{-5} моль/л, а при 47 °C 6·10^{-5} моль/л. Найти стандартную энтальпию растворения и растворимость при 57 °C.

Решение: Это стандартная задача о зависимости константы равновесия от температуры. Из известных значений константы при двух температурах находит \( \Delta_r H^\circ \) и величина \( K \) при третьей температуре. МХ диссоциирует на два иона, \( K_{ Л 300} = (L_{290})^2 = 4·10^{-10}, K_{ Л 320} = 36·10^{-10}. \)

\[
\begin{align*}
K_L &= \exp(-\Delta_r G^\circ/RT) = \exp(-\Delta_r H^\circ/RT) \cdot \exp(\Delta_r S^\circ/R), \\
\ln K_{ Л 300} &= -\Delta_r H^\circ/R \cdot 300 + \Delta_r S^\circ/R; \\
\ln K_{ Л 320} &= -\Delta_r H^\circ/R \cdot 320 + \Delta_r S^\circ/R.
\end{align*}
\]

В узком температурном интервале 30 градусов можно считать, что величины \( \Delta_r H^\circ \) и \( \Delta_r S^\circ \) не зависят от температуры. Тогда, вычитая из второго уравнения первое, исключим \( \Delta_r S^\circ \) и получим *

\[
\Delta_r H^\circ = \left[ RT \cdot T_2 \cdot \ln(K_{ Л 320}/K_{ Л 300}) \right]/(T_2-T_1) = (8,31\cdot 300 \cdot 320 \cdot 9)/20 = 87 600 \text{ Дж/моль}.
\]

Подставив найденное значение \( \Delta_r H^\circ \), вычислим \( \Delta_r S^\circ \):

\[
\Delta_r S^\circ = R \ln K_{ Л 300} + \Delta_r H^\circ/300 = 112 \text{ Дж/К·моль}.
\]

\\( K_{ Л 330} = \exp(-87 600/8,31 \cdot 330) \cdot \exp(112/8,31) = 9,55 \cdot 10^{-9} ;
\\ L_{330} = \sqrt{K_{ Л 330}} = 9,77 \cdot 10^{-5} \text{ моль/л}.
\\
\\Ответ: 88 кДж/моль; 9,8·10^{-5} моль/л.
\\
Пример 6. Вычислить растворимость гидроксида Cr(OH)_{3} при ст. у. из термодинамических данных.

Решение: Классическая прямая задача о нахождении равновесного состава из термодинамических данных \( \Delta_r G_{298}^\circ \) применительно к равновесию раствор = осадок. Из стандартных энергий Гиббса образования компонентов (если они отсутствуют, то из \( \Delta_r H_{298}^\circ \) и \( S_{298}^\circ \)) найдём стандартную энергию Гиббса процесса и из неё константу равновесия \( K_L = \exp(-\Delta_r G^\circ/RT) \), где \( T = 298 \text{ К} \) из условия задачи.

\[
\Delta_r G_{298}^\circ = \sum y_i (\Delta_r G_{298}^\circ)_i, \text{ где } \Delta_r G_{298}^\circ = \text{ стандартные энергии Гиббса образования реагентов и продуктов. Используем их значения из справочника [2].}
\\Cr(ОН)_{3(тв.)} = Cr^{3+}_{(в.)} + 3OH^{-}_{(в.)}
\\\Delta_r G_{298}^\circ = -(847) + (-223) + 3(-157) = 153 \text{ кДж/моль.}
\]

* Можно использовать уравнение изобары химического процесса.
\[ K_L = \exp(-153000/8,31 \cdot 298) = 1,5 \cdot 10^{-27}; \quad L = \frac{4}{27} K_L = 1,97 \cdot 10^{-7} \text{ моль/л.} \]

**Ответ:** 2,0 \cdot 10^{-7} \text{ моль/л.}

Интересно, что в том же справочнике [2], из которого взяты данные по энергиям Гиббса образования ионов и Cr(OH)\(_3\), приводятся две на три порядка меньшие величины \( K_L \): 7,4 \cdot 10^{-31} \text{ и } 1,1 \cdot 10^{-30}. \] Последнее значение относится как раз к аморфному Cr(OH)\(_3\), величина \( \Delta_f G_{298}^\circ \) которого и использовалась для нашего расчёта.

**Пример 7.** Вычислить стандартную энергию Гиббса образования соли AlPO\(_4\)\(_{3}\), если его \( K_L = 1,7 \cdot 10^{-19} \), и известны стандартные энергии Гиббса образования ионов Al\(^{3+\text{(в.)}}\) и PO\(_4^{3-\text{(в.)}}\), равные \(-490\) и \(-1019\) кДж/моль соответственно.

**Решение:** Обратная задача – найти термодинамические данные из константы равновесия.

\[ \Delta_r G_{298}^\circ = -RT \ln K_L = -8,31 \cdot 298 \cdot \ln 1,7 \cdot 10^{-19} = -107000 \text{ Дж/моль.} \]

\[ \text{AlPO}_4_{(тв.)} = \text{Al}^{3+\text{(в.)}} + \text{PO}_4^{3-\text{(в.)}} \]

\[ \Delta_r G_{298}^\circ = (\Delta_f G_{298}^\circ) + (-490) + (-1019) = -107 \text{ кДж/моль.} \]

**Ответ:** \(-107\) кДж/моль.

1.4. **Критерии осаждения и растворения**

Для многих практических задач, например, при разделении труднорастворимых веществ осаждением (дробное осаждение) или при растворении смеси веществ, важно уметь определять концентрации в растворе, при которых начинается образование твёрдой фазы или, наоборот, растворение определённого осадка. Такие параметры называют условиями (или критериями) осаждения (или раствоуения).

Общий подход к решению подобных задач ничем не отличается от задач на определение направления протекания процесса: если \( K > \Pi \) – разрешён прямой процесс, \( K < \Pi \) – обратный, \( K = \Pi \) – состояние равновесия. Особенность процессов осаждения / растворения только в их гетерогенности: всегда требуется проверка на достаточность количества компонентов для образования твёрдой фазы (см. раздел 1.2.1).
В случае присутствия в растворе только одного труднорастворимого электролита, способного образовать осадок, условия осаждения / растворения определяются непосредственно его произведением растворимости.

Например, для SrSO₄ \((K_L = 2 \cdot 10^{-7})\) условие осаждения:

\[ K_L < \Pi = c(Sr^{2+}) \cdot c(SO_4^{2-}), \]

где текущие концентрации ионов специально обозначены не квадратными скобками, а как \(c(Sr^{2+})\) и \(c(SO_4^{2-})\), чтобы не путать их с равновесными концентрациями.

Условие растворения

\[ K_L > \Pi = c(Sr^{2+}) \cdot c(SO_4^{2-}). \]

При отсутствии других содержащих ионы стронция или сульфата или реагирующих с этими ионами веществ

\[ [Sr^{2+}] = [SO_4^{2-}] = \sqrt{K_L} = 4,47 \cdot 10^{-4} \text{моль/л}, \]

и при \(c(Sr^{2+}) = c(SO_4^{2-}) > \sqrt{K_L}\) происходит осаждение, а при \(c(Sr^{2+}) = c(SO_4^{2-}) < \sqrt{K_L}\) – растворение осадка.

Рассмотрим случай с присутствием одноименного иона, конечное – сульфат-иона из другого хорошо растворимого сульфата, серной кислоты и т. п. Общие условия осаждения и растворения не изменяются, только теперь \(c(Sr^{2+}) \neq c(SO_4^{2-})\). Например, рассмотрим осаждение SrSO₄ в избытке 0,1 М раствора Na₂SO₄. Так как \(c(SO_4^{2-}) = 0,1 \text{ моль/л}\), условие осаждения \(c(Sr^{2+}) > K_L/0,1 = 2 \cdot 10^{-6} \text{ моль/л}\); условие растворения \(c(Sr^{2+}) <= 2 \cdot 10^{-6} \text{ моль/л}\). В избытке 0,1 М сульфата осаждение происходит при концентрации катиона стронция, на два порядка меньшей, чем в воде – влияние одноименного иона.

Более интересен случай одновременного осаждения двух соединений, например, SrSO₄ \((K_{L1} = 2 \cdot 10^{-7})\) и BaSO₄ \((K_{L2} = 1 \cdot 10^{-10})\). Расчитаем концентрацию всех частиц в растворе, одновременно содержащем осадки SrSO₄ и BaSO₄. Согласно изложенному ранее общему подходу, запишем уравнения равновесий:

\[
\text{SrSO}_4 = \text{Sr}^{2+} + \text{SO}_4^{2-};
\]
\[
\text{BaSO}_4 = \text{Ba}^{2+} + \text{SO}_4^{2-}.
\]

В растворе имеются ионы Sr²⁺, Ba²⁺ и SO₄²⁻; все их концентрации неизвестны. Два уравнения получаются из выражений констант равновесия (произведений растворимости):
\[ K_{L,1} = [\text{Sr}^{2+}][\text{SO}_4^{2-}] \]; \tag{1} \\
\[ K_{L,2} = [\text{Ba}^{2+}][\text{SO}_4^{2-}] \]. \tag{2} \\
Осталось составить одно уравнение, и в данном случае удобнее использовать уравнение электронейтральности: \\
\[ 2[\text{Sr}^{2+}] + 2[\text{Ba}^{2+}] = 2[\text{SO}_4^{2-}] \]. \tag{3} \\
Выразим \([\text{Ba}^{2+}]\) и \([\text{Sr}^{2+}]\) через \([\text{SO}_4^{2-}]\) из (1) и (2) и подставим в (3): \\
\[ [\text{SO}_4^{2-}] = \sqrt{K_{L,1} + K_{L,2}} = \sqrt{2001 \cdot 10^{-5}} = 4,473 \cdot 10^{-4} \text{ моль/л}; \]
\[ [\text{Sr}^{2+}] = 4,471 \cdot 10^{-4}, \quad [\text{Ba}^{2+}] = 2,24 \cdot 10^{-7} \text{ моль/л}. \]
Так как произведение растворимости \(\text{SrSO}_4\) примерно на три порядка меньше, а растворимость на полтора порядка меньше, чем для \(\text{BaSO}_4\), равновесная для \(\text{SrSO}_4\) концентрация сульфат-иона избыточна для \(\text{BaSO}_4\). Концентрация катиона бария в присутствии осадка \(\text{SrSO}_4\) уменьшается почти на два порядка, тогда как концен-трация катиона стронция практически не изменяется.

Другой пример: какие процессы происходят при добавлении сульфат-иона (в виде хорошо растворимого \(\text{Na}_2\text{SO}_4\), например) к 100 мл раствора, одновременно содержащему по 0,1 моль/л \(\text{Ba}^{2+}\) и \(\text{Sr}^{2+}\) – предоставлям рассмотреть читателям самостоятельно. В приведенном только ответ: для осаждения \(\text{BaSO}_4\) достаточно 10^{-10} моль (всего 1,42 \cdot 10^{-8} \text{ г} = 0,0142 \text{ мкг}) \(\text{Na}_2\text{SO}_4\); условие осаждения \(\text{SrSO}_4\) достигается при \(c(\text{SO}_4^{2-}) > 2 \cdot 10^{-7}/0,1 = 2 \cdot 10^{-6} \text{ моль/л}. \]
Таким образом, при равновесии возможно разделить трудно ра-створимые соли. Разумеется, возможность разделения не означает полного разделения; желающие сами могут проделать не очень сложные выкладки, чтобы определить, какое количество исходного бария осадится, а какое останется в растворе при достижении условия осаждения \(\text{SrSO}_4\). Однако следует заметить, что на практике часто происходит соосаждение – через образование твёрдых рас-творов, адсорбцию, захват включений частичек одной фазы другой, т. е. происходят процессы, которые не рассматриваются в идеализированном случае равновесия двух идеальных твёрдых электролитов с их раствором.

Еще один пример практически важной задачи, связанной с кри-териями осаждения / раствораения – влияние \(pH\) на осаждение – рас-творение гидроксидов, сульфидов, карбонатов и других солей с гидролизующимися анионами. В целом этот вопрос будет обсуждён в главе 2, так как относится к протеканию обменных реакций.
Влияние pH, т. е. концентрации гидроксид-иона, ничем не отличается от рассмотренной выше роли одноимённого иона на примере сульфата. В разделе 1.3 в примере 2 показано, что для Mg(OH)$_2$ ($K_L = 4 \cdot 10^{-12}$) $L = [\text{Mg}^{2+}] = \frac{3K_L}{4} = 1 \cdot 10^{-4}$, $[\text{OH}^-] = 2 \cdot 10^{-4}$ моль/л, и для насыщенного раствора $pOH = 3,7$, $pH = 10,3$. Следовательно, критерии осаждения и растворения через $pH$ можно сформулировать как осаждение при $pH > 10,3$ и растворение при $pH < 10,3$.

При осаждении гидроксида при разных начальных концентрациях $c_0(\text{Mg}^{2+})$ величина $pH$ осаждения меняется. Например, пусть $c_0(\text{Mg}^{2+}) = 0,01$ моль/л. Тогда условие осаждения $K_L = 4 \cdot 10^{-12} < \Pi = c_0(\text{Mg}^{2+}) \cdot c_0(\text{OH}^-)^2$ и

$$c_0(\text{OH}^-) > \sqrt[3]{4 \cdot 10^{-12} / 0,01} = 2 \cdot 10^{-5}$$ моль/л или

$$pOH < 4,7; \quad pH > 9,3.$$

Для менее растворимого Cu(OH)$_2$ ($K_L = 5 \cdot 10^{-19}$) начало осаждения из 0,01 М раствора соли меди(2+) сдвинуто в менее щелочную среду, $c_0(\text{OH}^-) > \sqrt[3]{5 \cdot 10^{-19} / 0,01} = 7 \cdot 10^{-10}$ или

$$pOH < 9,2; \quad pH > 5,8.$$

Основание осаждается в кислой среде – и это ничему не противоречит. Собственно, для поддержания концентрации соли меди в 0,01 моль/л достаточно $pH = 5,8$, т. е. концентрации сильной кислоты примерно $2 \cdot 10^{-6}$ моль/л или почти любой разбавленной слабой кислоты.

**Вопросы для самопроверки**

1. Что такое растворимость? Равновесная ли это величина?
2. Что такое осадок, осаждение?
3. Дайте определение произведению растворимости. Является ли эта величина константой равновесия?
4. Константой равновесия какого процесса является произведение растворимости?
5. Применимо ли понятие «произведение растворимости» к неэлектролитам? Почему?
6. Применимо ли понятие «произведение растворимости» к хорошо растворимым электролитам? Почему?
7. Выберите труднорастворимый электролит, диссоциирующий на четыре иона (в расчёте на формульную единицу). Запишите для него выражение произведения растворимости через равновесные концентрации ионов и через растворимость.

8. Почему в выражениях для произведения растворимости фигурируют только концентрации растворённых ионов, и отсутствуют характеристики твёрдого электролита?

9. Зависит ли произведение растворимости от концентрации ионов электролита? От концентрации ионов, не входящих в состав данного электролита и не взаимодействующих с ним?

10. Зависит ли растворимость от концентрации ионов, входящих в состав данного электролита?

11. Зависит ли произведение растворимости от температуры? Если да, то как?

12. Какова степень диссоциации ионов труднорастворимых электролитов в растворе?

13. Растворимость соли MX равна 10^{-10} моль/л. Найти произведение растворимости.

14. Растворимость соли MZ_3 равна 10^{-10} моль/л. Найти произведение растворимости.

15. Произведение растворимости соли MY равно 10^{-16}. Найти её растворимость в воде и в 0,1 М растворе M(NO_3).

16. Произведение растворимости соли MA_2 равно 4\cdot10^{-18}. Найти её растворимость.

17. Какой минимальный объём воды потребуется, чтобы полностью растворить 1 г HgS?

18. К 1 г CaCO_3 (K_L = 1\cdot10^{-10}) последовательно добавляли:
   а) 1 л воды;
   б) ещё 99 л воды;
   в) ещё 9 900 (т. е. в итоге 10 000 л) воды.
   Найти концентрации ионов в растворах а), б) и в).

19. Найти количество CaCO_3, остающегося в осадке в растворах а), б) и в) из вопроса 18.
20. Как изменится произведение растворимости и концентрации ионов в растворе, если к 1 л насыщенного раствора AgCl (\(K_L = 1 \cdot 10^{-10}\)) добавить 1 л воды?

21. Как изменятся произведение растворимости и концентрации ионов в растворе, если к 1 л насыщенного раствора AgCl (\(K_L = 1 \cdot 10^{-10}\)) добавить 0,001 моль NaCl?

22. Запишите систему уравнений (решать не нужно!) для расчёта концентраций ионов в растворе, содержащем одновременно осадки AgCl, AgBr и AgI.

23. Рассчитайте \(pH\) насыщенного раствора Al(OH)\(_3\) из справочных данных по его произведению растворимости.

24. Запишите систему уравнений (решать не нужно!) для расчёта концентраций ионов в растворе Al(OH)\(_3\) с учётом первой ступени гидролиза катиона алюминия.

25. Почему растворимые сульфиды (Na\(_2\)S, K\(_2\)S и другие) пахнут сероводородом, а труднорастворимые (CuS, HgS и другие) – нет?

26. Почему растворимость труднорастворимых сульфидов зависит от \(pH\) раствора, а труднорастворимых сульфатов бария, стронция – нет?

27. Рассчитайте растворимость Mg(OH)\(_2\) в 0,1 М растворе NaOH.

28. Рассчитайте растворимость Mg(OH)\(_2\) в 0,1 М растворе NH\(_3\).

29. Найдите растворимость Fe(OH)\(_2\) из \(K_L\).

30. Найдите \(K_L\) Ag\(_2\)S из его растворимости 6 \(\cdot\) 10\(^{-13}\) моль/л.

31. Найдите \(K_L\) Ag\(_2\)S из термодинамических данных по энталпиям образования и энтропиям Ag\(_2\)S, Ag\(^+\) и S\(^2-\).

32. Найдите растворимость Ag\(_2\)S в воде и в 0,01 М растворе Na\(_2\)S из его \(K_L\).

33. Найдите \(pH\) насыщенного водного раствора основания MOH, если его \(K_L = 10^{-14}\).

34. Произведение растворимости Ca(OH)\(_2\) при 25 °C равно 6 \(\cdot\) 10\(^{-9}\), а при 1005 °C 2 \(\cdot\) 10\(^{-7}\). Найдите стандартную энтальпию растворения.

35. Растворимость сульфата аммония при 80 °C в 12 раз выше, чем при 20 °C. Найдите стандартную энтальпию растворения.
36. К 0,01 моль сульфида никеля добавили 1 л буферного раствора, содержащего 0,01 моль сероводорода. Определите концентрацию Ni$^{2+}$ для буферных растворов с $pH = 5$ и $pH = 2,5$.

1.5. Заключение

Равновесия труднорастворимых электролитов с их растворами – частный случай химического равновесия, но важный для практики, и имеющий ряд особенностей. Константа такого равновесия получила специальное название, произведение растворимости, обозначается как $K_L$ (или $\Pi P$). Произведение растворимости выражается как произведение концентраций ионов в насыщенном растворе в степенях, соответствующих стехиометрическим коэффициентам:

$$(M_xA_y)_{нас} = xM^{y+} + yA^{x-},$$

$$K_L = [M^{y+}]^x[A^{x-}]^y = (xL)^x(yL)^y.$$

Здесь $L$ – растворимость, выраженная в моль/л,

$$L = \frac{x+y}{\sqrt{K_L / x^x y^y}}.$$

Твёрдый электролит находится в фазе постоянного состава, и не представлен в выражении произведения растворимости через равновесные концентрации. Для достижения равновесия необходимо и достаточно наличия (некоторого самого минимального) избытка твёрдого компонента; без него равновесие не достигается, весь электролит находится в растворённом состоянии.

Как и на любые равновесия, на положение равновесия между твёрдым электролитом и его насыщенным раствором можно влиять, изменения концентрации компонентов и температуру. Добавление в систему одного из участников равновесия, катиона или аниона, приводит к соответствующему уменьшению концентрации противоположного иона (высаливание). При этом изменяется именно положение равновесия, произведение растворимости (т. е. константа равновесия) остаётся неизменной. Увеличение температуры обычно увеличивает растворимость твёрдых электролитов, но есть исключения. Для гидроксидов и содержащих гидролизующиеся ионы электролитов растворимость зависит от величины $pH$.

В гетерогенных процессах осаждения / растворения важную роль играют кинетические факторы.
ГЛАВА 2. ОБМЕННЫЕ РЕАКЦИИ В ВОДНЫХ РАСТВОРАХ

2.1. Основные понятия и определения

2.1.1. Понятие химической реакции

Химической реакцией (превращением, процессом, взаимодействием, явлением) называют превращение одних веществ с определённым составом и свойствами в другие, с иными составом и свойствами. Например, из агрессивно взаимодействующего с кислородом воздуха и водой металлического натрия и ядовитого газообразного хлора образуется употребляемая в пищу соль, хлорид натрия NaCl.

Перечисленные в скобках синонимы термину реакция используют, чтобы подчеркнуть её определённый аспект – результат протекания реакции или её процесс. При химической реакции происходят изменения на атомно-молекулярном уровне, при этом атомные ядра не изменяются. Radioактивный распад и ядерные реакции не относятся к химическим превращениям. Иначе можно сказать, что химическая реакция – это процесс и результат изменения химических связей, или перераспределение электронной плотности валентных электронов.

В более широком понимании к химическим превращениям относятся и такие процессы, как растворение твёрдых, жидких и газообразных веществ в жидких растворителях, электролитическую диссоциацию, изомеризацию, кристаллизацию из растворов и даже некоторые полиморфные превращения или процессы спекания пористых твёрдых веществ в плотную керамику. Этот широкий подход вполне оправдан, так как перечисленные (и некоторые иные) так называемые физико-химические (или даже некоторые относимые к физическим) процессы протекают на том же атомно-молекулярном уровне, что и химические реакции, и подчиняются тем же закономерностям.

Например, при растворении хлорида натрия в воде не только получается жидкий раствор с иными свойствами, чем исходные кристаллический NaCl и вода, но и происходит разрыв ионных связей между катионом Na⁺ и анионом Cl⁻ и образование ион-дипольных связей между ионами и молекулами воды; состояния валентных
электронов натрия и хлора в растворе иные, чем в исходном кристалле. С наглядностью такие изменения проявляются в тех случаях, когда вещество при растворении изменяет цвет, например, фиолетовый в кристаллическом состоянии иод становится коричневым в водном или спиртовом растворе и синим в соединении включения в крахмал. Принцип такой же – изменение состояния валентных электронов вследствие взаимодействия молекул I₂ с молекулами растворителя или с атомами функциональных групп соединения-хозяина – крахмала, располагающимися во внутренних стенках его полостей, включающих молекулы-гости. Это взаимодействие приводит к оттягиванию части электронной плотности связывающей электронной пары в молекуле I₂ к растворителю (или атомам хозяина), в результате состояние молекулы в газе, кристалле, спирте и крахмале отличается, что наблюдается в такой характеристике вещества, как его цвет.

2.1.2. Уравнение химической реакции

В самом общем виде химическая реакция может быть схематически представлена как превращение: **Реагенты ➝ Продукты**. В случае если в реакции между стехиометрическими веществами образуются стехиометрические вещества, изменение состава при реакции подчиняется **стехиометрическому уравнению**, например, 2Na + Cl₂ = 2NaCl. В левой части уравнения пишутся формулы исходных веществ (реагентов), в правой части – веществ, получаемых в результате протекания химической реакции (продуктов реакции, конечных веществ). Знак равенства, связывающий левую и правую часть, указывает, что общее количество атомов элементов, участвующих в реакции, остается постоянным, что отражает закон сохранения массы. Это достигается расстановкой перед формулами **стехиометрических коэффициентов** (обычно для удобства выбираются целочисленные), показывающих количественные соотношения между реагентами и продуктами реакции. Здесь стехиометрические коэффициенты 2 : 1 : 2 отражают соотношение реагирующих веществ: из двух молей (атомов) натрия на один моль (молекул) хлора образуется два моля NaCl. Со стехиометрическим уравнением можно оперировать, как с алгебраическим – переносить члены из правой части в левую и наоборот с изменением знака, умножать или делить все стехиометрические коэффициенты на одно и то же чис-
ло. Знак равенства может означать и наличие химического равновесия, однако для подчёркивания наличия равновесия (а также для акцентирования обратимости реакции) используются двусторонние стрелки, например, \( \text{N}_2 + 3\text{H}_2 \rightleftharpoons 2\text{NH}_3 \). Необратимость реакции или смещение равновесия в одном направлении подчеркивают односторонней стрелкой, \( \text{HCl}_{\text{газ}} \rightarrow \text{H}^+_{\text{в.}} + \text{Cl}^-_{\text{в.}} \).

В общем уравнении реакции обычно представляется в виде алгебраического уравнения

\[
\sum_{i} a_i A_i = \sum_{j} b_j B_j ,
\]

где \( A_i \) – исходные реагенты, \( a_i \) – их стехиометрические коэффициенты; \( B_j \) – продукты реакции, \( b_j \) – их стехиометрические коэффициенты. В этом случае все коэффициенты \( a_i \) и \( b_i \) положительны. Второй вариант, использующийся при проведении расчётов термодинамических величин,

\[
\sum_{i} y_i Y_i = 0,
\]

где \( Y_i \) – все участники реакции, \( y_i \) – их стехиометрические коэффициенты. В этом случае \( y_i > 0 \) для продуктов реакции и \( y_i < 0 \) для исходных реагентов.

Для реакций в растворах с участием электролитов используются молекулярная и ионная форма записи уравнения реакции. Уравнение полной нейтрализации серной кислоты гидроксидом натрия в молекулярной форме:

\[ \text{H}_2\text{SO}_4 + 2\text{NaOH} = \text{Na}_2\text{SO}_4 + 2\text{H}_2\text{O}. \]

Уравнение в ионной полной форме отражает электролитическую диссоциацию: сильные электролиты отображаются в виде ионов, в котором они и существуют в реальных растворах, тогда как слабые электролиты, неэлектролиты и трудно растворимые соединения (мало диссоциированные вещества) записываются в молекулярной форме:

\[ 2\text{H}^+_{\text{в.}} + \text{SO}_4^{2-}_{\text{в.}} + 2\text{Na}^+_{\text{в.}} + 2\text{OH}^-_{\text{в.}} = 2\text{Na}^+_{\text{в.}} + \text{SO}_4^{2-}_{\text{в.}} + 2\text{H}_2\text{O}_{\text{ж.}}. \]

После «приведения подобных» и сокращения коэффициентов получается сокращённая ионная форма записи:

\[ \text{H}^+_{\text{в.}} + \text{OH}^-_{\text{в.}} = \text{H}_2\text{O}_{\text{ж.}}, \]

которая отражает тот факт, что любая реакция нейтрализации между сильной кислотой и сильным основанием сводится к образованию...
нению молекулы воды в жидком состоянии из гидратированных протона и гидроксид-иона. Например, реакция между азотной кислотой и гидроксидом бария будет записана точно таким же уравнением, хотя полная форма записи (индексы далее опустим) выглядит иначе:

\[ 2\text{HNO}_3 + \text{Ba(OH)}_2 = \text{Ba(NO}_3)_2 + \text{H}_2\text{O}. \]

Ещё пример молекулярной и краткой ионной формы записи уравнения реакции для окислительно-восстановительной реакции:

\[ 2\text{KMnO}_4 + 3\text{Na}_2\text{SO}_3 + \text{H}_2\text{O} = 2\text{MnO}_2 + 3\text{Na}_2\text{SO}_4 + 2\text{KOH}; \]
\[ 2\text{MnO}_4^- + 3\text{SO}_3^{2-} + \text{H}_2\text{O} = 2\text{MnO}_2 + 3\text{SO}_4^{2-} + 2\text{OH}^-. \]

При ионной форме записи количество электрических зарядов в левой и правой частях уравнения должно быть одинаковым (закон сохранения заряда, он же принцип электронейтральности).

2.1.3. Классификация реакций

Для классификации химических реакций используют самые различные классификационные признаки, связанные как с отличиями на микро- (атомно-молекулярном) уровне, так и некоторые макроскопические или даже формальные отличия. Существуют классификации как по результату реакций, так и по процессам их протекания. Иногда существенны отличия в условиях протекания реакций (природе и масштабе систем, в которых протекает реакция, величине температуры и т. д.). Мы перечислим здесь наиболее часто употребляющиеся в различных областях химии классификации. Наиболее информативна классификация по природе частиц, переносимых при химическом превращении от одних веществ (исходных) реагентов к другим (продуктам): кислотно-основные (переносятся протоны), рассмотрены в [1]; окислительно-восстановительные (переносятся электроны), рассмотрены в главе 3 настоящего пособия. Часто используют формальную классификацию по количеству частиц (формулярных единиц), которое может уменьшаться, увеличиваться или сохраняться в результате реакции. Это реакции присоединения (ассоциации), разложения (диссоциации) и обмена соответственно.
1. Реакции присоединения (ассоциации) — реакции, в результате которых происходит уменьшение количества структурных единиц (атомов, ионов, групп атомов) в продуктах по сравнению с исходными реагентами, в самом общем виде реакции типа

\[ A + B = AB \] или \[ nA = A_n \] и т. п.

Например, \( 2H = H_2 \), \( SO_2 + Cl_2 = SO_2Cl_2 \), \( CaO + CO_2 = CaCO_3 \), \( 2NO_2 = N_2O_4 \), \( SnCl_2 + Cl_2 = SnCl_4 \) и все реакции полимеризации.

Эти реакции отличаются по многим признакам, но самое главное, что их объединяет — образование дополнительных химических связей (в продуктах реакций присоединения связей больше, чем в исходных реагентах). Следовательно, чаще всего такие реакции протекают с выделением энергии (не всегда, так как величина энергии связи различна для разных связей).

2. Противоположный случай, увеличение числа частиц в продуктах реакции относительно исходных реагентов — реакции разложения,

\[ AB = A + B , \quad ABC = A + B + C, \quad ABC = AB + C \]

и т. п., например, \( O_3 = 3O \), \( 2O_3 = 3O_2 \), \( NH_4Cl = NH_3 + HCl \), а также обратные реакции для приведённых выше, в п. 1. Подобные реакции в растворах электролитов называют не разложением, а диссоциацией, например, \( HCl_{газ} = H^{+}_{в.} + Cl^{-}_{в.} \); \( Al_2(SO_4)_3_{тв.} = 2Al^{3+}_{в.} + 3 SO_4^{2-}_{в.} \).

Реакции разложения приводят не только к увеличению формальной характеристики — количества «частиц», но, что более важно, и к уменьшению количества химических связей в результате реакции. В первом примере, диссоциации трёхатомной молекулы озона на атомы, происходит разрыв всех исходных химических связей, новых не образуется. В общем, в реакциях разложения количество химических связей уменьшается, из сложных молекул (структурных единиц) в результате образуются более простые.

Поскольку реакции разложения приводят к уменьшению количества химических связей в продуктах по сравнению с исходными реагентами, то для протекания реакций требуется энергия — либо тепловая, т. е. повышение температуры способствует разложению, либо соответствующие фотоны для фотохимических реакций, как в примере фотолиза AgBr, либо электрическая энергия и т. п.

Особый случай, диссоциация электролитов в растворах, рассмотрена в разделе 1.3 части 1 пособия.
Реакции, в результате которых число структурных единиц не изменяется, подразделяют на реакции замещения, обмена и переноса, но граница между ними не настолько отчетлива, как для разложения – присоединения.

3.1 К реакциям замещения относят реакции, в результате которых одна из участвующих в реакции частиц «вытесняет» (замещает, англ. *displacement* или *replacement*) другую, являющуюся частью более сложной частицы:

\[ AB + C = AC + B \]

или

\[ AB_2 + 2C = 2BC + A, \]

и т. п. Примерами реакций замещения могут служить совершенно разные по природе замещающих частиц реакции:

Fe + CuSO_4 = FeSO_4 + Cu,

где элементарное железо замещает медь в соединении;

Zn + 2HCl = ZnCl_2 + H_2,

цинк замещает водород;

CaCO_3 + SO_2 = CaSO_3 + CO_2;

здесь более кислый оксид SO_2 замещает в соли менее кислый, CO_2, а вовсе не атом серы – атом углерода;

PbCl_2тв. + 2Ag^+ = 2AgClтв. + Pb^{2+},

dва иона серебра замещают ион свинца в твёрдом соединении. Здесь корректнее говорить о сохранении числа формульных единиц, а не частиц, так как число ионов уменьшается.

Первые два примера относятся к окислительно-восстановительным реакциям, в двух последних степени окисления не изменяются. Замещаются как атомы элементов, так и многоатомные группы (такие реакции иногда выделяют в отдельный подкласс).

3.2. При реакциях обмена (в английской литературе используют термин *double displacement*, *double replacement*) участвующие в реакции молекулы или ионы обмениваются своими частями:

\[ AB + CD = AD + CB. \]

Принципиального отличия с реакциями замещения нет. Как и для реакций замещения, наблюдается большое разнообразие по природе переносимых частиц, которое можно увидеть из приведённых примеров:

H_2S + D_2O = HDS + HDO,

реакция изотопного обмена;

PCl_3 + PBr_3 = PBrCl_2 + PBr_2Cl,
«статистический» обмен;

\[
\text{BaCl}_2 \text{в.} + \text{MgSO}_4 \text{в.} \rightarrow \text{MgCl}_2 \text{в.} + \text{BaSO}_4 \text{тв.},
\]

ионный обмен с образованием труднорастворимого соединения;

\[
\text{H}_2\text{SO}_4 + 2\text{NaOH} = \text{Na}_2\text{SO}_4 + 2\text{H}_2\text{O},
\]

реакция нейтрализации.

Следует отметить, что реакции ионного обмена, представляющие наиболее многочисленную группу реакций этого класса, по сути, являются реакциями ассоциации ионов, протекающими после соответствующих реакций диссоциации. Это явно видно при краткой ионной форме записи двух последних реакций:

\[
\text{Ba}^{2+} + \text{SO}_4^{2-} = \text{BaSO}_4;
\]
\[
\text{H}^+ + \text{OH}^- = \text{H}_2\text{O}.
\]

Но, поскольку и любая другая реакция обмена обязательно включает диссоциацию и ассоциацию частиц (в таком либо обратном порядке), реакцию ионного обмена, записанную в молекулярной форме, формально относят к реакциям обмена.

3.3. В реакциях переноса атом или группа атомов переходит от одной структурной единицы к другой:

\[
\text{AB} + \text{BC} = \text{A} + \text{B}_2\text{C} \text{ или } \text{A}_2\text{B} + 2\text{CB}_2 = \text{ACB}_2 + \text{ACB}_3,
\]

например,

\[
\text{NaHSO}_4 + \text{Na}_2\text{CO}_3 = \text{Na}_2\text{SO}_4 + \text{NaHCO}_3; \]
\[
2\text{AgCl} + \text{SnCl}_2 = 2\text{Ag} + \text{SnCl}_4; \]
\[
\text{H}_2\text{O} + 2\text{NO}_2 = \text{HNO}_2 + \text{HNO}_3.
\]

Как и реакции замещения и обмена, эта классификационная группа объединяет самые разные по природе реакции.

Конечно, классификация, оперирующая переносом неких абстрактных «частиц» \text{A}, \text{B}, \text{C}, \text{AB} и т. п., основанная на комбинаторике, по существу формальна и не обладает какой-либо предсказательной силой (кроме прогноза уменьшения энергии при процессах присоединения и увеличения при разложении). Однако именно эта формальность подхода делает такую классификацию наиболее общей, поэтому она широко применяется в химии.

2.1.4. Обменные реакции в водных растворах

Как уже показано в предыдущем разделе, к обменным реакциям можно отнести совершенно различные по природе переносимых
частиц реакции – от кислотно-основных до окислительно-восстановительных. Далее в настоящей главе рассматриваются реакции обмена в широком смысле, включающем и обмен, и замещение, и перенос, но протекающие с переносом ионов (включая протоны), без переноса электронов. Реакции с переносом электронов (окислительно-восстановительные реакции) рассмотрены в отдельной Главе 3.

Все эти реакции включают процесс электролитической диссоциации. Общий формальный термин диссоциация имеет разное конкретное содержание для диссоциации в газовой фазе и жидком растворе. Сравним реакции диссоциации хлороводорода в газе и растворе. В газовой фазе разложение молекулы хлороводорода на ионы (называемое гетеролитическим разрывом связи) HCl(g) = H+(g) + Cl-(g) приводит только к разрыву исходной связи H-Cl в молекуле (ещё и с переносом электрона на атом хлора), новых связей при этом не образуется. Очевидно, что такой процесс требует затрат энергии.

При диссоциации в водном растворе в процессе участвуют молекулы растворителя – воды, хотя их обычно не указывают при записи уравнения реакции. Однако в уравнении диссоциации хлороводорода в воде HCl(g) = H+(v) + Cl-(v) нижние индексы «v.» указывают, что протон * и хлорид-ион существуют в растворе в сольватированном состоянии, т. е. взамен разорванной связи H-Cl в исходной молекуле образуются новые, между ионами и полярными молекулами растворителя, воды (ион-дипольные связи), и правильнее было бы записывать это уравнение так:

HCl(g) + (x + y)H2Oж. = H+(H2O)x + Cl-(H2O)y,

где x и y – количество молекул воды, сольватирующих протон и хлорид-ион соответственно. Именно за счёт энергии этих образующихся в результате электролитической диссоциации связей между продуктами диссоциации и растворителем возможно протекание диссоциации в растворах (и в том числе процессов растворения) при относительно низких температурах (комнатной и ниже). Электролитическая диссоциация разобрана в главе 1 части 1 пособия.

* На самом деле даже не протон, а катион гидроксона, H3O+; как подробно разобрано в главе 2 части 1 пособия.
Тем не менее, формально процессы электролитической диссоциации кислот, солей и оснований по Аррениусу можно отнести к процессам диссоциации по классификации, основанной на изменении количества частиц (хотя корректнее говорить о формульных единицах) в результате реакции. Для процесса, происходящего в растворе с основаниями Брёнстеда, \( \text{B} + \text{H}_2\text{O} = \text{BH}^+ + \text{OH}^- \), количество частиц не меняется – это перенос протона с молекулы воды на молекулу основания B, что по формальной классификации относится к реакциям переноса, или в самом широком смысле к обменным реакциям. И хотя иногда в литературе такие процессы называют основной диссоциацией, уместнее называть их основной ионизацией.

К обменным реакциям в водных растворах относятся реакции нейтрализации между кислотами и солями, процессы гидролиза солей, а также реакции с образованием или растворением твёрдых веществ – процессы осаждения и растворения.

### 2.2. Оценка констант равновесия обменных реакций

#### 2.2.1. Реакции нейтрализации

Здесь мы ограничимся обменными реакциями с участием электролитов в водных растворах, протекающих без изменения степеней окисления.

Например, реакция нейтрализации

\[
\text{HCl} + \text{NaOH} = \text{NaCl} + \text{H}_2\text{O},
\]

или в сокращённой ионной форме

\[
\text{H}^+ + \text{OH}^- = \text{H}_2\text{O},
\]

– реакция, обратная самодиссоциации воды. Соответственно и её константа равновесия

\[
K_n = \frac{1}{[\text{H}^+][\text{OH}^-]}
\]

равна \( K_n = 1 / K_W = 10^{14} \) при ст. у. и очень велика.

Если заменить соляную кислоту на любую другую сильную кислоту и NaOH на любое другое сильное основание, уравнение нейтрализации в ионной форме не изменится – это будет образование воды из H\(^+\) и OH\(^-\) (строго говоря, из H\(_3\)O\(^+\) и OH\(^-\)). Соответственно, константа реакции нейтрализации между любой сильной кислотой и любым сильным основанием при стандартных условиях равна 10\(^{14}\).

При записи уравнения реакции в ионной форме сильные электролиты (все соли, сильные кислоты и основания) приводят в виде
тех ионов, которые преобладают в растворе (исключение — вместо гидроксония обычно записывают протон H^+), а незелектролиты и слабые электролиты (неважно, твёрдые, жидкие или газообразные) — в молекулярной.

Реакция между слабой кислотой и сильным основанием — это уже другая реакция, например, реакция между слабой синильной кислотой и сильным основанием KOH:

\[ \text{HCN} + \text{KOH}^- = \text{KCN} + \text{H}_2\text{O}, \]
\[ \text{HCN} + \text{K}^+ + \text{OH}^- = \text{CN}^- + \text{K}^+ + \text{H}_2\text{O} \text{ или} \]
\[ \text{HCN} + \text{OH}^- = \text{CN}^- + \text{H}_2\text{O}, \]

Из последней краткой ионной формы уравнения видно, что эта реакция, обратная гидролизу цианид-иона (см. раздел 3.3 в [1]).

Константа равновесия этой реакции легко выражается через справочные значения константы кислотности HCN и \( K_w \). Запишем выражение константы через равновесные концентрации:

\[ K = \frac{[\text{CN}^-]}{([\text{HCN}][\text{OH}^-])}. \]

Видно, что \([\text{CN}^-]/[\text{HCN}] \) — это часть выражения константы кислотности HCN через равновесные концентрации, не хватает одного сомножителя \([\text{H}^+]\) в числителе. Домножим числитель и знаменатель (числитель и знаменатель дроби можно домножать на одно и то же число) на \([\text{H}^+]\):

\[ K = \frac{[\text{CN}^-][\text{H}^+]}{([\text{HCN}][\text{OH}^-][\text{H}^+])} = K_a(\text{HCN})/K_w = 5 \cdot 10^{-10}/10^{-14} = 5 \cdot 10^4. \]

Это тоже довольно большая константа; при обычно используемых концентрациях реагентов нейтрализация будет протекать почти до конца — но всё же её величина почти на 10 порядков меньше, чем константа реакции нейтрализации между сильными кислотами и щелочами.

По сути изложенный подход представляет использование следствий закона Гесса: если процесс является линейной комбинацией других процессов, то его тепловой эффект (и энтальпия, и энергия Гиббса реакции и вообще любые экстенсивные функции состояния) является линейной комбинацией тепловых эффектов (и аналогично для других функций состояния) этих других процессов. Константа равновесия — также функция состояния, связанная со стандартной энергией Гиббса реакции уравнением \( K = -\Delta_r G^\circ/RT \), где \( \Delta_r G^\circ \) находится в показателе экспоненты. Следовательно, если \( \Delta_r G^\circ \) является линейной комбинацией (энергии Гиббса складываются — вычи-
таятся, с учётом коэффициентов), то константы равновесия умно- жаются – делятся друг на друга (конечно, тоже с учётом стехиомет- рических коэффициентов).

К известным справочным величинам относятся константы кислотности / основности и произведения растворимости (более широко – также константы комплексообразования, стандартные электродные потенциалы – но о них в Главе 3). При оценке искомую константу равновесия обменной реакции электролитов в водных растворах следует пытаться выразить через эти известные константы. Удобнее делать это так:

1) Записать уравнение процесса в сокращённой ионной форме.
2) Выразить константу равновесия через равновесные концентрации компонентов.
3) Попытаться домножить числитель и знаменатель этого выражения на концентрации таких ионов и в такой степени, чтобы это привело к выражению, содержащему комбинации выражений известных констант $K_a$, $K_b$, $K_L$, $K_W$. Для кислотно-основных процессов чаще всего такими сомножителями будут либо $[H^+]$, либо $[OH^-]$ в нужных степенях; для реакций с участием труднорастворимых электролитов прежде всего нужно стремиться получить выражения, содержащие произведения растворимости, т. е. домножать на концентрации определённых участников процесса – катионов и/или анионов – в нужных степенях.

Рассмотрим пример нейтрализации слабой многоосновной кислоты, $H_3PO_4$, ($K_{a1} = 7 \cdot 10^{-3}$, $K_{a2} = 6 \cdot 10^{-8}$, $K_{a3} = 5 \cdot 10^{-13}$) слабым основанием $NH_3$, ($K_b = 2 \cdot 10^{-5}$). Ортофосфорная кислота трёхосновная, возможно образование трёх разных солей, средней (NH₄)₃PO₄ и двух кислых: двузамещённой (NH₄)₂HPO₄ и однозамещённой NH₄H₂PO₄. Оценим константы равновесия всех трёх возможных реакций в этой системе:

\[
H_3PO_4 + NH_3 = NH_4^+ + H_2PO_4^-; \quad K_1 = [NH_4^+][H_2PO_4^-]/[H_3PO_4][NH_3].
\]

\[
H_3PO_4 + 2NH_3 = 2NH_4^+ + HPO_4^{2-}; \quad K_2 = [NH_4^+]^2[HPO_4^{2-}]/[H_3PO_4][NH_3]^2.
\]

\[
H_3PO_4 + 3NH_3 = 3NH_4^+ + PO_4^{3-}; \quad K_3 = [NH_4^+]^3[PO_4^{3-}]/[H_3PO_4][NH_3]^3.
\]

Чтобы получить выражение для константы основности аммиака, нужно домножить первое выражение на $[OH^-]$; при этом, чтобы получить выражение для $K_{a1}$, нужно домножить на $[H^+]$ – домножим числитель и знаменатель константы равновесия первой реакции сразу на $[OH^-] \cdot [H^+]$. Оказывается, что
\[ K_1 = (K_{a1} \times K_b)/K_W = 1.4 \cdot 10^7. \]

Аналогично, домножив второе выражение на \([\text{OH}^-]^2[\text{H}^+]^2\), а третье на \([\text{OH}^-][\text{H}^+]^3\), получаем

\[ K_2 = (K_{a1} \times K_{a2} \times K_b^2)/(K_W)^2 = 1.7 \cdot 10^9. \]
\[ K_3 = (K_{a1} \times K_{a2} \times K_{a3} \times K_b^3)/(K_W)^3 = 1.7 \cdot 10^{16}. \]

В рассмотренном примере наибольшая величина константы получается для образования средней соли *, но если взять более слабое основание, например, с \(K_b = 10^{-10}\), ситуация меняется: наибольшее значение, \(\sim 10^2\), имеет константа равновесия для образования двузамещённого ортофосфата, и наименьшее, \(\sim 10^{-10}\), для образования средней соли.

### 2.2.2. Реакции осаждения – растворения

Еще один пример – реакция сильной кислоты (не важно, какой именно) с карбонатами, приводящая к вытеснению более слабой угольной и в итоге вследствие неустойчивости угольной кислоты к выделению углекислого газа. Реакции хорошо и трудно растворимых карбонатов существенно разные, и константы равновесия также различны. Сравним растворение хорошо растворимого \(\text{Na}_2\text{CO}_3\) (катион не важен, важна только высокая растворимость) и труднорастворимого \(\text{PbCO}_3\) (который его нет, важна только высокая растворимость) и труднорастворимого \(\text{PbCO}_3\) (*\(K_L = 4 \cdot 10^{-14}\)):

\[ \text{CO}_3^{2-} + 2\text{H}^+ = \text{CO}_2 + \text{H}_2\text{O}; \quad (1) \]
\[ \text{PbCO}_3 + 2\text{H}^+ = \text{Pb}^{2+} + \text{CO}_2 + \text{H}_2\text{O}. \quad (2) \]

Первая реакция – обратная реакция для полной, по объему ступеням разщелачивания, диссоциации угольной кислоты, \(\text{CO}_2 + \text{H}_2\text{O} = \text{CO}_3^{2-} + 2\text{H}^+\); соответственно константа её равновесия – величина, обратная суммарной константе равновесия диссоциации кислоты:

\[ K_1 = [\text{CO}_2]/[\text{CO}_3^{2-}][\text{H}^+]^2 = 1/K_{a1}K_{a2} = 1/4 \cdot 10^{-7} \cdot 5 \cdot 10^{-11} = 5 \cdot 10^{16}. \]

Для второй реакции

\[ K_2 = [\text{CO}_2][\text{Pb}^{2+}]/[\text{H}^+]^3 = [\text{CO}_2][\text{Pb}^{2+}][\text{CO}_3^{2-}]/[\text{H}^+]^2[\text{CO}_3^{2-}] =
= K_L(\text{PbCO}_3)/K_{a1}K_{a2} = 4 \cdot 10^{-14}/4 \cdot 10^{-7} \cdot 5 \cdot 10^{-11} = 2 \cdot 10^3. \]

* Получить практически средний ортофосфат аммония нейтрализацией из водных растворов трудно из-за низкой термической стабильности – он разлагается с выделением аммиака и более устойчивых кислых солей уже при комнатной температуре.
Константа второй реакции хоть и достаточно велика, но на 13 порядков меньше первой. Если первая реакция даже при ничтожных концентрациях кислоты будет смещена вправо, то для практического растворения карбоната свинца потребуется хотя и небольшая, но заметная концентрация кислоты.

Растворение труднорастворимых карбонатов может идти и по другому маршруту, без выделения свободной угольной кислоты (т. е. \( \text{CO}_2 \)), а с образованием гидрокарбонатов:

\[
PbCO_3 + H^+ = Pb^{2+} + HCO_3^-. \tag{3}
\]

Интересно сравнить константу равновесия этой реакции с \( K_2 \).

\[
K_3 = [\text{HCO}_3^-][\text{Pb}^{2+}]/[\text{H}^+] = [\text{HCO}_3^-][\text{Pb}^{2+}][\text{CO}_3^{2-}]/[\text{H}^+][\text{CO}_3^{2-}] = K_L(\text{PbCO}_3)/K_a = 4 \cdot 10^{-14}/4 \cdot 10^{-7} = 10^{-7}.
\]

Константа раствораения с образованием гидрокарбоната на 10 порядков меньше, чем константа реакции (2) – можно полагать, что реально труднорастворимые карбонаты будут растворяться именно по реакции (2), с выделением углекислого газа.

Будут ли растворяться труднорастворимые карбонаты в слабых кислотах? Например, в кислоте \( \text{HA} \) с \( K_a = 10^{-5} \) (такую константу кислотности имеет, например, уксусная кислота).

\[
PbCO_3 + 2\text{HA} = Pb^{2+} + \text{CO}_2 + 2\text{A}^- + \text{H}_2\text{O}. \tag{4}
\]

\[
K_4 = [\text{CO}_2][\text{Pb}^{2+}][\text{A}^-]^2/\text{HA}^2 = [\text{CO}_2][\text{Pb}^{2+}][\text{A}^-]^2[\text{CO}_3^{2-}][\text{H}^+]^2/[\text{HA}]^2[\text{H}^+]^2[\text{CO}_3^{2-}] = K_L(\text{PbCO}_3)K_a(\text{HA})/K_a^2 = 4 \cdot 10^{-14}(10^{-5})^2/4 \cdot 10^{-7} \cdot 5 \cdot 10^{-11} = 2 \cdot 10^{-7}.
\]

Константа равновесия весьма мала, и даже в концентрированной уксусной кислоте карбонат свинца растворим в незначительной степени; практически растворить его не получится. Но для более растворимых карбонатов, например, для карбоната магния, \( \text{MgCO}_3 (K_L = 8 \cdot 10^{-6}) \), константа равновесия оказывается \( K \sim 1 \): карбонат магния оказывается растворим в достаточно концентрированных растворах уксусной кислоты и практически нерастворим в разбавленных. Напомним, что критерии растворения рассмотрены в разделе 1.4: следует сравнивать константу равновесия с произведением реакции, в которое входят текущие (или исходные) концентрации участников реакции.

Важный для понимания теории обменных реакций и для практики вопрос – полный и необратимый гидролиз солей, у которых и катион от слабого (или труднорастворимого) основания, и анион от
слабой кислоты. Такие соли могут полностью гидролизоваться в водных растворах, особенно если реакция гидролиза сопровождается выделением некоторых продуктов в твёрдую (труднорастворимые гидроксиды двух- и трехвалентных металлов) и / или газовую фазу (H₂S, CO₂, NH₃ и др.).

К этому случаю относятся хрестоматийные примеры полного гидролиза сульфидов алюминия, хрома, когда гидролиз M³⁺ не ограничивается первой или второй ступенью, как и гидролиз сульфид-иона, а протекает до αₕ ≈ 1:

$$\text{Al}_2\text{S}_3 + 6\text{H}_2\text{O} \rightarrow 2\text{Al(OH)}_3 \downarrow + 3\text{H}_2\text{S} \uparrow.$$ 

Заметим, что для этого уравнения ионная форма не отличается от молекулярной, так как ни среди реагентов, ни среди продуктов нет сильных электролитов. Попытки получить такие гидролизующиеся сульфиды обменными реакциями из водных растворов заканчиваются осаждением гидроксидов, например:

$$2\text{Al}^{3+} + 3\text{S}^{2-} + 6\text{H}_2\text{O} \rightarrow 2\text{Al(OH)}_3 \downarrow + 3\text{H}_2\text{S} \uparrow,$$

или

$$2\text{AlCl}_3 + 3\text{K}_2\text{S} + 6\text{H}_2\text{O} \rightarrow 2\text{Al(OH)}_3 \downarrow + 3\text{H}_2\text{S} \uparrow + 6\text{KCl}.$$ 

Оценим константу равновесия этого процесса.

$$K = \frac{[\text{H}_2\text{S}]^3/[\text{Al}^{3+}]^2[\text{S}^{2-}]^3}{[\text{H}_2\text{S}]^3[\text{H}^+]^6/[\text{Al}^{3+}]^2[\text{S}^{2-}]^3[\text{H}^+]^6[\text{OH}^-]^6} = = K_W^6/[K_{L(\text{Al(OH)}_3)]^2[K_{a1(\text{H}_2\text{S})}K_{a2(\text{H}_2\text{S})}]^3} = (10^{-14})^6/(6 \cdot 10^{-32})^2(10^{-7} \cdot 10^{-13})^3 = 10^{39}.$$ 

Аналогично (т. е. выпадением осадка гидроксида) заканчиваются попытки осаждения карбоната Fe³⁺:

$$2\text{Fe}^{3+} + 3\text{CO}_3^{2-} + 3\text{H}_2\text{O} \rightarrow 2\text{Fe(OH)}_3 \downarrow + 3\text{CO}_2 \uparrow.$$ 

В этом случае о гидролизе можно говорить только гипотетически, так как карбонат железа(III), в отличие от сульфидов алюминия и хрома, синтезированных в результате твердофазных реакций M + S, пока не получен. Но можно с уверенностью сказать, что если он будет получен, то окажется полностью гидролизующимся в водных растворах по рассмотренным выше причинам (оценить константу приведённой реакции предоставляется читателям в качестве самостоятельного упражнения).

Из-за полного гидролиза нельзя получить в водных растворах такие соли слабых оснований и слабых кислот, как силикаты аммония и многих двух- и трехвалентных металлов.

Почему одни сульфиды металлов, такие, как Ag₂S, Cu₂S, CuS, FeS, CoS, NiS, ZnS, PbS, Bi₂S₃, La₂S₃ и другие, осаждаются из вод-
ных раствором сульфидами, а другие – Al₂S₃, Cr₂S₃ – гидролизуются полностью и необратимо до гидроксидов?

Во-первых, образование таких сульфидов невыгодно термодинамически. Так, для процесса

\[ 2\text{Al}^{3+} + 3\text{S}^{2-} = \text{Al}_2\text{S}_3 \]

величина стандартной энергии Гиббса \( \Delta_r G^\circ = 231 \text{kДж/моль} > 0 \) – положительна и настолько велика, что ни при каких реально достижимых концентрациях ионов не может протекать в прямом направлении. Тогда как, например, для осаждения сульфида меди(+2)

\[ \text{Cu}^{2+} + \text{S}^{2-} = \text{CuS} \]

\( \Delta_r G^\circ = -204 \text{kДж/моль} < 0 \) и реакция разрешена для стандартных состояний и даже при весьма малых концентрациях ионов.

Во-вторых, для конкурирующей в водных растворах реакции полного гидролиза

\[ 2\text{Al}^{3+} + 3\text{S}^{2-} + 6\text{H}_2\text{O} \rightarrow 2\text{Al(OH)}_3 + 3\text{H}_2\text{S} \]

как показано выше, константа весьма велика, \( K = 10^{39} \), или в терминах энергии Гиббса \( \Delta_r G^\circ = -RT\ln K = -222 \text{kДж/моль} \) – реакция гидролиза разрешена, в отличие от осаждения. Интересно, что твердофазная реакция

\[ 2\text{Al} + 3\text{S} = \text{Al}_2\text{S}_3 \]

tермодинамически разрешена – собственно, именно так и получают сульфиды алюминия и хroma.

Любопытный промежуточный случай между частичным и полным гидролизом, обратимым и необратимым протеканием обменных реакций представляет осаждение гидроксида магния аммиаком:

\[ \text{Mg}^{2+} + 2\text{NH}_3 + 2\text{H}_2\text{O} = \text{Mg(OH)}_2 + 2\text{NH}_4^+ \]

\[ \text{MgCl}_2 + 2\text{NH}_3 + 2\text{H}_2\text{O} = \text{Mg(OH)}_2\downarrow + 2\text{NH}_4\text{Cl} \]

в молекулярной форме.

Константу равновесия оценим по приведённым выше алгоритмам:

\[
K = \frac{[\text{NH}_4^+]^2[\text{OH}^-]^2}{[\text{NH}_3]^2[\text{Mg}^{2+}][\text{OH}^-]^2} = K_b(\text{NH}_3)^2/K_L(\text{Mg(OH)}_2) = 10^2.
\]

Константа равновесия не мала и не велика, она сопоставима с реально достижимыми на практике величинами \( \Pi \). В этой реакции выпадающий при добавлении аммиака к соли магния осадок Mg(OH)₂ можно снова растворить добавлением незначительного избытка соли аммония (увеличив \( \Pi \) по сравнению с \( K \)), опять осадить аммиаком Mg(OH)₂ и т. д.

46
Отметим, что повышение температуры, как правило, способствует полному гидролизу и соответствующим обменным реакциям.

2.3. Практически обратимые и необратимые реакции

На практике часто важно, осуществима ли обратная реакция. Реакции, которые можно провести как в прямом, так и в обратном направлении (естественно, при разных условиях), называются обратимыми (двусторонними). Реакции, которые осуществимы только в одном направлении, называются необратимыми (односторонними).

Напомним, что реакции, про текающие при поддержании внешних условий без подвода к реагирующей системе дополнительной энергии, и не самопроизвольные (вынужденные), для протекания которых требуется подвод энергии из внешней среды.

Следует различать термодинамическую и кинетическую обратимость. Концентрации продуктов при равновесии определяются величиной константы равновесия $K$. Если она велика*, то при равновесии будут преобладать продукты (при очень большой $K$ в смеси будут практически только продукты), если очень мала — то только исходные реагенты. Такие реакции необратимы термодинамически. В промежуточном случае получим примерно сопоставимые концентрации реагентов и продуктов, и добавлением первых либо вторых можно, согласно принципу Ле Шателье, сдвигать положение равновесия в сторону продуктов либо реагентов соответственно, и увеличивать выход прямой или обратной реакции. Это термодинамическая обратимость.

Примеры необратимых реакций: нейтрализация сильного основания (NaOH, Ba(OH)$_2$ и др.) сильной кислотой (серной, азотной, соляной), $K = 10^{14}$; окисление сильного восстановителя сильным окислителем, сульфита Na$_2$SO$_3$ перманганатом, KMnO$_4$, (уравнение реакции приведено в следующей Главе 3), $K = 10^{230}$, и показатель степени 230 в величине константы равновесия — не опечатка), или металлического цинка медным купоросом, Zn + CuSO$_4$ = Cu + ZnSO$_4$, $K = 10^{37}$. В приведённых реакциях мы

* По сравнению с произведением реакции, отражающим начальные концентрации реагентов и продуктов.
получим соль при нейтрализации и не сможем обеспечить хоть сколько-нибудь заметный выход для обратной реакции, превращения соли, например, NaCl в соляную кислоту и щёлочь (провести гидролиз соли), $K_{обр} = 10^{-14}$. Аналогично нереально создать такое большое соотношение концентраций $[\text{Zn}^{2+}]/[\text{Cu}^{2+}]$, чтобы самопроизвольно получить в заметном количестве металлический цинк за счёт реакции $\text{Cu} + \text{ZnSO}_4 = \text{Zn} + \text{CuSO}_4$, $K_{обр} = 10^{-37}$ (это можно сделать электролизом, используя электрическую энергию из внешней среды).

Наоборот, нейтрализация слабого основания слабой кислотой в водном растворе, например, аммиака синильной кислотой, ни при каких реально осуществимых концентрациях участников не приведёт к полному протеканию реакции

$$\text{NH}_3 + \text{HCN} \not\rightarrow \text{NH}_4\text{CN}, \quad K = 0,9,$$

что мы подчеркнули использованием двусторонних стрелок вместо знака равенства при записи уравнения реакции (соответственно, одностороннюю стрелку вместо знака равенства используют, чтобы подчеркнуть необратимость реакции). Полученный раствор при любых реальных концентрациях участников будет содержать и исходные основание и кислоту, и соль, хотя увеличением концентрации первых можно увеличивать выход второй, и наоборот. Если в качестве исходного реагента использовать цианид аммония, полученный не в водном растворе, а иным способом (например, из газообразных NH3 и HCN), то он будет гидролизоваться в растворе, т. е. частично превращаться в основание и кислоту:

$$\text{NH}_4\text{CN} \not\rightarrow \text{NH}_3 + \text{HCN}, \quad K_{обр} = 1,1.$$

Реально положение равновесия достигается далеко не всегда, и по разным причинам. Для реакций в растворах кинетически необратимыми (односторонними) являются обычно такие реакции, в ходе которых хотя бы один из продуктов удаляется из зоны реакции (выпадает в осадок, улетучивается или выделяется в виде малодиссоциированного соединения).

Ещё один важный аспект кинетической необратимости – невозможность достижения положения равновесия из-за слишком низкой (иногда нулевой) скорости реакции в одном из направлений. Так, для реакции разложения гидразина на азот и водород при 25 °C
\[ N_2H_4 = N_2 + 2H_2 \quad K = 10^{28^*}, \] и при достижении равновесия никакой гидразин в сколько-нибудь заметных количествах существовать не должен! Однако химики работают с ним, более того, получают ещё менее устойчивые его производные (например, несимметричный диметилгидразин, прозванный совершенно не по номенклатуре «гептилом», давно и успешно применяется в больших количествах как жидкое ракетное топливо). Это пример кинетической необратимости. Скорость разложения гидразина при температурах, не превышающих комнатные, очень мала, что позволяет этому соединению существовать, а химикам – работать с ним. Такие соединения, как гидразин, заведомо неустойчивые при обычных условиях, иногда называют неравновесными, хотя правильно называть их метастабильными.

Необратимы (\( \alpha \to 1 \)) и реакции с образованием труднорастворимых веществ (выпадением осадков, как говорят химики), например:

\[ 2AgNO_3 + BaCl_2 = 2AgCl\downarrow + Ba(NO_3)_2 \text{ – в молекулярной форме и } \]
\[ Ag^+ + Cl^- = AgCl \text{ – в ионной.} \]

Понятно, что реакция фактически одинакова независимо от того, какой хлорид использовать – бария, натрия или соляную кислоту, её

\[ K = 1/K_L(AgCl) \approx 10^{10}. \]

Вопросы для самопроверки

1. Приведите свои примеры реакций присоединения, разложения и обмена.
2. Приведите свои примеры кислотно-основной и окислительно-восстановительной реакции.
3. Приведите критерий практической обратимости реакций.
4. Запишите в молекулярной и ионной (полной и краткой) форме реакцию \( Ba(OH)_2 \) с \( HNO_3 \). Является ли другой реакцией реакция \( Ba(OH)_2 \) с \( HCl \)? \( C H_2SO_4? \)

* Разумеется, гидразин получают не по реакции \( N_2 + 2H_2 = N_2H_4 \), для которой \( K = 10^{-28} \), а обходным путём, окисляя аммиак гипохлоритом натрия.
5. Запишите в молекулярной и ионной (полной и краткой) форме реакцию KCl с AgNO₃. Является ли другой реакцией реакция AgNO₃ с NaCl? C HCl? C BaCl₂?

6. Запишите в молекулярной и ионной форме все возможные обменные реакции NaOH с H₂SO₄. Оцените их константы равновесия.

7. Запишите в молекулярной и ионной форме реакции полного гидролиза карбоната и гидрокарбоната аммония.

8. Оцените и сравните константы равновесия реакций:
   а) HCO₃⁻ = H⁺ + CO₃²⁻;
   б) HCO₃⁻ = CO₂ + OH⁻;
   в) HCO₃⁻ + H⁺ = H₂O + CO₂.

9. Оцените и сравните константы равновесия реакций
   а) 2KCN + CO₂ + H₂O = K₂CO₃ + 2HCN↑;
   б) KCN + CO₂ + H₂O = KHCO₃ + HCN↑.
   Являются ли они практически обратимыми?

10. Оцените константу равновесия реакции
    Al(OH)₃ + 3HCN = Al(CN)₃ + 3H₂O.

11. Оцените константу равновесия осаждения Fe(OH)₃ из раствора FeCl₃ карбонатом натрия.

12. Что будет осаждаться при сливании 1 М растворов FeCl₂ и Na₂CO₃ – FeCO₃ или Fe(OH)₂?

13. Что будет осаждаться при сливании 1 М растворов FeCl₃ и Na₂CO₃?

14. Оцените и сравните константы равновесия осаждения Fe(OH)₃ из раствора соли железа(+3) гидроксидом натрия и аммиаком.

15. Оцените константу полного растворения (до средней соли, ацетата алюминия) Al(OH)₃ в уксусной кислоте.

16. Можно ли получить Cr₂S₃ обменной реакцией в водном растворе между хлоридом хрома(+3) и сульфидом натрия? Какой осадок при этом выпадет? Оцените константу равновесия этой реакции.
17. Как можно получить Cr₂S₃? Сравните константы равновесия реакции синтеза Cr₂S₃ из твёрдых простых веществ и гипотетической реакции в водном растворе

\[ 2\text{Cr}^{3+} + 3\text{S}^{2-} = \text{Cr}_2\text{S}_3 \text{тв.} \]

2.4. Заключение

Обменные реакции — с сохранением количества формульных единиц, типа \( AB + CD = AD + CB \). К ним относятся реакции нейтрализации, гидролиза, осаждения / растворения и другие реакции в водных растворах без изменения степени окисления.

При рассмотрении обменных реакций в водных растворах удобнее и правильнее использовать краткую ионную форму записи уравнений реакций, когда сильные электролиты записывают в виде ионов, а слабые и неэлектролиты — в молекулярной форме. Константы равновесия обменных реакций можно оценить на основе закона Гесса, представив реакцию как линейную комбинацию более простых реакций, для которых имеются справочные данные по константам равновесия: кислотной (или основной) диссоциации, произведения растворимости, \( K_W \).

Реакции, константы которых превышают реально достижимые величины произведения реакций, практически невозможно провести в обратном направлении — это практически необратимые реакции (очень примерно, если \( K >> 1 \)). Реакции, константы равновесия которых сравнимы по величине с достижимыми на практике произведениями реакции, могут быть практически проведены в обоих направлениях путём изменения концентрации участников процесса: при увеличении концентрации исходных реагентов — в прямом направлении, при увеличении концентрации продуктов — в обратном. Это практически обратимые реакции. Существует и кинетическая необратимость, обусловленная практической невозможностью протекания разрешённой термодинамически реакции из-за её низкой скорости.
ГЛАВА 3. ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ (ОВР)

3.1. Окисление и восстановление: полуэлектроны, степень окисления

3.1.1. Окисление и восстановление

Окислительно-восстановительные реакции (ОВР) – это химические превращения с переносом электронов от одной частицы к другой. Такие реакции часто называются Red-Ox реакциями, от англ. reduction – восстановление и oxidation – окисление.

В ОВР всегда участвуют восстановитель (Red) и окислитель (Ox). Восстановитель отдаёт электрон или несколько электронов. Окислитель принимает электроны.

В результате ОВР всегда происходит окисление восстановителя и восстановление окислителя. Процесс окисления – потеря электронов восстановителем. Процесс восстановления – приобретение электронов окислителем *.

Вследствие законов сохранения процесс окисления и восстановления связаны друг с другом; протекание одного без другого в макроскопических масштабах невозможно. Такие процессы называются сопряжёнными. В ОВР обязательно принимают участие две сопряжённые пары: исходная форма окислителя Ox₁ получает электроны и превращается в восстановленную форму Red₁

\[
Ox₁ + n₁e = Red₁,
\]

а восстановитель отдаёт электроны и превращается в окисленную форму

\[
Red₂ - n₂e = Ox₂.
\]

Примеры:

\[
\begin{align*}
Ag^+ + Fe^{2+} & = Ag + Fe^{3+};
\end{align*}
\]

Окс 1  Ред 2  Окс 2

Здесь имеются сопряжённые пары (Ag⁺/Ag)₁ и (Fe²⁺/Fe³⁺)₂.

* Полезное мнемоническое правило: слова взять (электроны) и восстановиться – начинаются с одной буквы, как и отдать – окислиться.
2KMnO₄ + 10HBr + 3H₂SO₄ = 2MnSO₄ + 5Br₂ + K₂SO₄ + 8H₂O

Окс 1    Ред 2    Ред 1    Окс 2

Здесь имеются сопряжённые пары (KMnO₄/MnSO₄)₁ и (HBr/Br₂)₂.

Корректнее для ОВР в водных растворах приводить ионную форму записи: (MnO₄⁻/Mn²⁺)₁ и (Br⁻/Br₂)₂. Напомним, что в ионной форме приводятся все сильные электролиты: хорошо растворимые соли; сильные кислоты; сильные основания. В молекулярной форме приводятся неэлектролиты, слабые электролиты (кислоты и основания), газы, трудно растворимые соединения, включая соли.

3.1.2. Полуреакции окисления и восстановления

Каждую ОВР можно разделить на две полуреакции: восстановления окислителя и окисления восстановителя. Запишем эти полуреакции для приведённой выше ОВР:

Ag⁺ + e = Ag  восстановление окислителя;
Fe²⁺ – e = Fe³⁺  окисление восстановителя.

MnO₄⁻ + 5e + 8H⁺ = Mn²⁺ + 4H₂O  восстановление Ox;
2Br⁻ – 2e = Br₂  окисление Red.

Уравнение первой ОВР получается сложением полуреакций, а во втором случае следует предварительно умножить первую полуреакцию на 2, а вторую на 5 – но подробнее об уравнивании ОВР см. в разд. 3.2.

Таким образом, имеется полное формальное совпадение с кислотно-основными реакциями: как и там, в окислительно-восстановительных реакциях обязательно принимают участие две сопряжённые пары. Но если в кислотно-основных реакциях происходит перенос протона от кислотной формы первой пары к основной форме второй, то в ОВР переносятся электроны от восстановленной формы одной сопряжённой пары (Fe²⁺ в первом примере, HBr во втором) к окисленной форме другой сопряжённой пары (Ag⁺ и MnO₄⁻ соответственно).

3.1.3. Степень окисления

3.1.3.1. Степень окисления и заряд атома

Важнейшая характеристика химической связи и состояния атома в веществе – степень окисления. Без этого понятия трудно изложить
ОВР. Именно электроотрицательность и степень окисления лежат в основе классификации и номенклатуры неорганических соединений.

Степень окисления (гетеровалентность, электровалентность) – условный заряд атома в предположении о полностью полярной (ионной) связи. Степень окисления характеризует полярность химической связи и определяется разностью электроотрицательностей атомов в соединении. Это один из аспектов валентности (наряду с ковалентностью – количеством образованных атомом ковалентных связей, и координационным числом – количеством соседних атомов в веществе).

Важно понимать, что степень окисления – не реальный (называемый эффективным), а именно условный заряд атома в веществе. Эффективный заряд кислорода в ряду оксидов элементов 3-го периода изменяется от −0,81 для Na₂O до −0,01 для Cl₂O₇, но степень окисления кислорода во всех этих оксидах равна −2.

Степень окисления обозначается над символом элемента (Cu O₂⁻²), причем в отличие от обозначения заряда вначале указывается знак, затем число. Также для конкретного элемента в соединении степень окисления может указываться в правом верхнем индексе (Cu⁺²O⁻₂) или в круглых скобках после символа или названия элемента, Cu (+2), медь (II), арабскими или римскими цифрами.

Степень окисления – условная величина. Она может быть дробной, Na₂S⁴⁺², S⁴⁻², Na₃P⁶⁻³ и т. п. Когда степень окисления разных атомов одного элемента различна (Fe₃O₄ = Fe⁺²O⁻²Fe⁺³₂O₃, K₂S⁺⁶₂O₈ – два О(−1)), то для удобства, например, при уравнивании ОВР, можно приписывать атомам средние, дробные, или даже несвойственные им степени окисления: Fe⁷⁺²⁸/₃O₄, K₂S⁺⁷₂O⁻⁸/₈.

3.1.3.2. Правила определения степени окисления
Основное правило вытекает из закона сохранения заряда и принципа электронейтральности – сумма степеней окисления всех атомов в веществе должна быть равна нулю. В простых веществах, как правило, нет полярных связей, и логично принять их степень окисления также равной нулю (Na, H₂, O₃, C₆₀).

В соединениях плотность валентных электронов распределяется соответственно электроотрицательности: она больше у наиболее электроотрицательных атомов.
Самый электроотрицательный элемент – фтор. Ему не хватает до завершения валентного уровня одного электрона:

\[
F[He]2s^22p^5 + e \rightarrow F^-[He]2s^22p^6 = [Ne],
\]

и фтор в любых соединениях (кроме F₂) имеет степень окисления –1, F⁻¹.

Второй по электроотрицательности элемент, кислород, во всех соединениях, кроме имеющих связь O–O, находится в степени окисления –2 (H₂O, Na₂O, MgO, Cl₂O₇ и другие оксиды; KOH, Fe(OH)₃, H₂SO₄, HClO₄ и т. д., и т. п.). В диоксилороде О₂ и озоне O₃ степень окисления 0, как и для любых других простых веществ; в пероксидах и соединениях на их основе (H₂O₂ и BaO₂ и т. п.) степень окисления кислорода –1; в соединениях с фтором (O⁺²F₂) +2.

У имеющего один валентный электрон водорода степень окисления +1 в соединениях с более электроотрицательными элементами (галогенами HГ, халькогенами H₂S, H₂Se, H₂Te, в NH₃, CH₄ и т. п.; HCl, HNO₃). В соединениях с менее электроотрицательными элементами, прежде всего, металлами, водород имеет степень окисления –1 (в NaH, MgH₂, AlH₃, B₂H₆). Сумма степеней окисления всех атомов в нейтральном соединении равна 0, например, H⁺₅I⁻⁷O⁻₂₆; в ионе – заряду иона, например, \((S^{6+}O^{−2}_4)^{2−}\).

3.1.3.3. Высшая, низшая, промежуточная степени окисления

Напомним важные понятия высшая и низшая степень окисления элемента. Высшая степень окисления достигается, когда атом теряет все свои валентные электроны. Для непереходных (s- и p-) элементов она численно равна номеру группы по краткой версии Периодической системы элементов: +1 для H и группы 1 (IА, щелочных металлов); +2 для группы 2 (IIA, для Be, Mg и щелочноземельных металлов); +3 для группы 13 (IIIA) и т. п., до +6 для группы 16 (VIA, кроме кислорода) и +7 для галогенов (разумеется, кроме фтора). Многие переходные d-элементы тоже имеют высшие степени окисления, совпадающие с номером группы в краткой форме ПС: +3 для Sc, Y (группа 3 или IIВ), +4 для подгруппы Ti, +5 для подгруппы V, +6 для подгруппы Cr, +7 для подгруппы Mn.

55
Низшая степень окисления достигается, когда элемент принимает максимально возможное количество электронов; для непереходных элементов группы IIIA это −3; для непереходных элементов групп с IVA по VIIA это 8 − N, где N – номер группы ПС в краткой форме; для переходных приём электронов не характерен. Так, низшая степень окисления у бора −3, у углерода, кремния и других −4, N и подгруппы VA −3, кислорода и халькогенов −2, водорода и галогенов −1.

Остальные степени окисления относятся к промежуточным. Например, C(+2), N(+3), N(0), O(−1), S(−4), Cl(0), Cl(+1), Cl(+3), Cl(+5) и т. п. Понятно, что элемент в высшей степени окисления может быть в ОВР только окислителем; элемент в низшей степени окисления только восстановителем; элемент в промежуточной степени окисления может быть в принципе окислителем, восстановителем и диспропорционировать (см. ниже в 3.1.4).

3.1.4. Классификация ОВР

ОВР подразделяются на межмолекулярные, внутримолекулярные и реакции диспропорционирования/конпропорционирования. Межмолекулярные ОВР происходят между окислителем и восстановителем, представляющими разные вещества, например

\[
2\text{KMnO}_4 + 16\text{HBr} = 2\text{MnBr}_2 + 5\text{Br}_2 + 2\text{KBr} + 8\text{H}_2\text{O}.
\]

Окс 1 Mn(7) Ред 2 Br(1) Ред 1 Br(1) Окс 2 Br(0)

Внутримолекулярные – ОВР, в которых и окислитель, и восстановитель находятся в составе одного и того же соединения:

\[
2\text{KClO}_3 = 2\text{KCl} + 3\text{O}_2.
\]

Окс 1 Cl(+5) Ред 2 O(2) Ред 1 Cl(1) Окс 2 O(0)

Реакции диспропорционирования (дисмутации) – ОВР, в которых степень окисления элемента изменяется на более высокую и более низкую (т. е. и окислителем, и восстановителем является один элемент):

\[
3\text{Cl}_2 + 6\text{KOH} = 5\text{KCl} + 2\text{KClO}_3 + 3\text{H}_2\text{O},
\]

Окс 1 и Ред 2 Cl(0) Ред 1 Cl(1) Окс 2 Cl(+5)

Или в ионной форме

\[
3\text{Cl}_2 + 6\text{OH}^- = 5\text{Cl}^- + 2\text{ClO}_3^- + 3\text{H}_2\text{O}.
\]

Обратные диспропорционированию реакции, в которых окислитель и восстановитель – разные соединения одного элемента,
а в результате реакции образуется соединение этого элемента в промежуточной степени окисления, относят к реакциям конпропорционирования.  

\[
\text{HClO}_3 + 5\text{HCl} = 3\text{Cl}_2 + 3\text{H}_2\text{O.}
\]

\(\text{Ox}_1 \text{Cl}(+5) \quad \text{Red}_2 \text{Cl}(-1) \quad \text{Red}_1 \text{ и } \text{Ox}_2 \text{Cl}(0)\)

Или в ионной форме

\[
\text{ClO}_3^- + 5\text{Cl}^- + 6\text{H}^+ = 3\text{Cl}_2 + 3\text{H}_2\text{O.}
\]

Некоторые реакции могут одновременно принадлежать двум классам, например, термическое разложение нитрата аммония

\[
\text{NH}_4\text{NO}_3 = \text{N}_2\text{O} + 2\text{H}_2\text{O}
\]

\(\text{Ox}_1 \text{N}(+5) \quad \text{Red}_2 \text{ N}(-3) \quad \text{Red}_1 \text{ и } \text{Ox}_2 \text{ N}(+1)\)

является примером внутримолекулярной реакции конпропорционирования.

Любую ОВР можно разделить на полураеакции окисления и восстановления (разд. 3.1.2). Например, для приведённой выше внутримолекулярной реакции разложения хлората калия:

1) \(2\text{KClO}_3 + 12e = 2\text{KCl} + 6\text{O}^{2-}\) – полуреакция восстановления;
2) \(6\text{O}^{2-} - 12e = 3\text{O}_2\) – полуреакция окисления.

Таким образом, в реакции \(2\text{KClO}_3 = \text{KCl} + 3\text{O}_2\) переносится от восстановителя к окислителю 12е.

Для реакции диспропорционирования (в ионной форме)

\[
3\text{Cl}_2 + 6\text{OH}^- = 5\text{Cl}^- + \text{ClO}_3^- + 3\text{H}_2\text{O}:
\]

1) \(\text{Cl}_2 + 2e + = 2\text{Cl}^-\) – полуреакция восстановления;
2) \(\text{Cl}_2 - 10e + 12\text{OH}^- = 2\text{ClO}_3^- + 6\text{H}_2\text{O}\) – полуреакция окисления.

Чтобы получить уравнение реакции, нужно первую полураеакцию домножить на 5 и сложить со второй – только так будет выполнено условие сохранения зарядов (электронного баланса). Здесь происходит перенос 5е от восстановителя к окислителю.

Возможны реакции, в которых окислителем или восстановителем одновременно являются несколько элементов, например,

\[
4\text{FeS} + 7\text{O}_2 = 2\text{Fe}_2\text{O}_3 + 4\text{SO}_2.
\]

Здесь окисляются сразу и Fe(+2), и S(−2):

1) \(7\text{O}_2 + 28e = 14\text{O}(-2)\) – полуреакция восстановления;
2) \(4\text{Fe}(+2) + 4\text{S}(-2) - 28e = 4\text{Fe}(+3) + 4\text{S}(+4)\) – полуреакция окисления.
Переносится 28e.

* В некоторых источниках – конпропорционирования.
3.2. Уравнивание ОВР

Рассмотрим вначале случай, когда известны продукты ОВР, и требуется только расставить стехиометрические коэффициенты (уравнять реакцию). В качестве примера возьмём реакцию перманганата калия с сульфитом натрия в нейтральной среде:

\[ \text{K}^{+1} \text{Mn}^{+7} \text{O}^{-2}_4 + \text{Na}^{+1}_2 \text{S}^{+4} \text{O}^{-2}_3 = \text{Mn}^{+4} \text{O}^{-2}_2 + \text{Na}^{+1}_2 \text{S}^{+6} \text{O}^{-4}_2 + \ldots \]

Многоточие показывает, что, возможно, уравнение реакции должно быть дополнено – как мы увидим далее.

Начинать составление уравнения ОВР следует с определения окислителя и восстановителя. Для этого найдём степени окисления элементов во всех исходных реагентах и продуктах ОВР (с приобретением химических знаний и опыта вы будете сразу видеть, степени окисления каких элементов изменились, и не будет необходимости сравнивать totally степени окисления всех элементов). Видим, что степени окисления K, Na и O не изменились. Марганец в исходном перманганате находится в высшей степени окисления +7, в продукте реакции MnO_2 в степени окисления +4: Mn принимает электроны, и, следовательно, KMnO_4 – окислитель. Соответственно, сера – восстановитель, окисляется от степени окисления +4 в сульфите до высшей степени окисления +6 в сульфате.

По условию задачи реакция протекает в водном растворе. В предыдущих главах показано, что наиболее адекватна для описания таких реакций ионная форма записи уравнений химических реакций. Окислительно-восстановительные реакции – не исключение. Запишем исходные реагенты и продукты в ионной форме. Na_2SO_3 и KMnO_4 – соли, причём хорошо растворимые; следовательно, в растворе полностью диссоциированы, и их следует записать в виде ионов. Понятно, что реагируют (изменяются в результате реакции) только MnO_4^−, восстанавливаясь до MnO_2(тв.), и SO_3^{2−}, окисляясь до SO_4^{2−}; Na^+ и K^+ в реакции не участвуют, и приводить их в записи реакции нет смысла – они будут присутствовать с одинаковыми коэффициентами и в левой, и в правой части уравнения. Запишем в краткой ионной форме:

\[ \text{SO}_3^{2−} + \text{MnO}_4^{−} + \ldots = \text{MnO}_2(тв.) + \text{SO}_4^{2−} + \ldots \]

Подчеркнём, что мы используем при составлении уравнений ОВР реально участвующие в процессе частицы: находящиеся в
водном растворе: SO$_3^{2-}$, MnO$_4^-$, SO$_4^{2-}$, а также фазу MnO$_2$(тв.). Использовать не реальные частицы, а элементы в соответствующей степени окисления (Mn$^{+7}$ вместо MnO$_4^-$, S$^{+4}$ вместо SO$_3^{2-}$ и т. п.) допустимо только при уравнивании электронного баланса (см. ниже), но не в итоговом уравнении ОВР.

3.2.1. Электронный баланс

Восстановитель отдаёт, а окислитель принимает электроны; электроны – заряженные частицы; заряд не может исчезать бесследно или возникать из ничего: выполняется закон сохранения заряда. Следовательно, количество отданных восстановителем и принятых окислителем электронов должно быть одинаковым; это называется выполнением электронного баланса. Сульфит отдаёт 2$e^-$, а перманганат принимает 3$e^-$. Наименьшее общее кратное равно 6. Чтобы баланс «сошёлся», необходимо перед SO$_3^{2-}$ поставить коэффициент 3, а перед MnO$_2$ коэффициент 2; тогда восстановитель отдаёт, а окислитель принимает 6 электронов:

1) 2MnO$_4^-$ + 6$e^-$ = 2MnO$_2$ – полуреакция восстановления;
2) 3SO$_3^{2-}$ – 6$e^-$ = 3SO$_4^{2-}$ – полуреакция окисления *.

В итоге

3SO$_3^{2-}$ + 2MnO$_4^-$ + … = 2MnO$_2$ + 3SO$_4^{2-}$ + ….

Эти коэффициенты 3 и 2 при дальнейших манипуляциях изменять нельзя, так как они отражают электронный баланс (сохранение заряда). Разумеется, обе части уравнения могут быть домножены на любое одинаковое число – при этом изменится общее количество отдаваемых восстановителем и принимаемых окислителем электронов, а баланс сохранится.

3.2.2. Материальный баланс и электронейтральность

Далее следует уравнять заряды частиц – в левой части уравнения заряд 8–, тогда как в правой 6–. Следовательно, нужно либо в левую часть добавить два положительных заряда, H$^+$, либо в правую два отрицательных, OH$^-$. Однако по условию задачи, среда – нейтральная, нет ни H$^+$, ни OH$^-$, и в левую часть добавлять ничего нельзя.

* Здесь допустима запись: 1) 2Mn$^{+7}$ + 6$e^-$ = 2Mn$^{+4}$O$_2$ – полуреакция восстановления, 2) 3S$^{+6}$ – 6$e^-$ = 3S$^{+6}$ – полуреакция окисления, но рациональнее использовать приведённую в основном тексте форму записи.
Можно добавлять заряды только в правую часть: следовательно, нужно добавить туда два гидроксид-иона. Но откуда и в какой форме они могут взяться? По условию рассматривается реакция в водном растворе – в избытке присутствует вода. Вследствие автопротолиза $H_2O = H^+ + OH^-$ вода является источником протонов и гидроксид-ионов. Добавим в правую часть уравнения два гидроксида:

$$3SO_3^{2-} + 2MnO_4^- \rightarrow 2MnO_2 + 3SO_4^{2-} + 2OH^-.$$ 

Теперь заряды уравнены, но в правой части появились два атома водорода – очевидно, из материального баланса (равенства количества атомов водорода в левой и правой части уравнения), что в левую часть следует добавить молекулу воды:

$$3SO_3^{2-} + 2MnO_4^- + H_2O = 2MnO_2 + 3SO_4^{2-} + 2OH^-.$$ 

Уравнение в ионной форме составлено. Проверим его; рекомендуется делать это проверкой баланса по кислороду. В самом деле, в левой, и в правой части уравнения имеется по 18 атомов O: Выполняется баланс и по всем остальным атомуам (S, Mn, H) и по зарядам.

Хотя катионы не участвуют в реакции, для полноты следует записать уравнение и в молекулярной форме, сохранив найденные выше величины коэффициентов, в первую очередь отражающих электронный баланс 3 и 2. Это необходимо, так как стехиометрические расчеты по уравнению производятся именно по молекулярной форме записи, не говоря о том, что не бывает отдельно сульфит- или перманганат-ионов, а только определённые соединения: сульфит калия, сульфит натрия, перманганат бария и т. п. Полная ионная форма уравнения реакции

$$3SO_3^{2-} + 2MnO_4^- + H_2O + 6Na^+ + 2K^+ = 2MnO_2 + 3SO_4^{2-} + 2OH^- + 6Na^+ + 2K^+.$$ 

Версий записи уравнения в молекулярной форме может быть несколько, например:

$$3Na_2SO_3 + 2KMnO_4 + H_2O = 2MnO_2 + 3Na_2SO_4 + 2KOH;$$
$$3Na_2SO_3 + 2KMnO_4 + H_2O = 2MnO_2 + 2Na_2SO_4 + 2NaOH + K_2SO_4;$$
$$3Na_2SO_3 + 2KMnO_4 + H_2O = 2MnO_2 + 2Na_2SO_4 + NaOH + KOH + KNaSO_4.$$ 

Какой вариант записи уравнения в молекулярной форме выбрать – не имеет принципиального значения, все они отражают одну и ту же реакцию, которая наиболее адекватно представлена выше в ионной форме.

По мере приобретения химических знаний и навыка уравнивания ОВР запись некоторых промежуточных этапов уравнивания становится излишней: один раз записав уравнение ОВР в краткой ионной
форме и уравнив его, можно сразу переходить к молекулярной форме – запись полной ионной формы можно опустить.

3.2.3. Общий алгоритм уравнивания ОВР

Представим алгоритм уравнивания ОВР в водных растворах по пунктам:

1. Определить окислитель и восстановитель.

2. Записать основу уравнения ОВР, т. е. исходные окислитель и восстановитель и продукты их восстановления/окисления, в краткой ионной форме.

3. Исходя из изменения степеней окисления окислителя и восстановителя, найти количество отдаваемых восстановителем и принимаемых окислителем электронов. Найти их наименьшее общее кратное (НОК) и выставить перед окислителем и восстановителем (в обеих частях уравнения) коэффициенты, обеспечивающие электронный баланс (т. е. множители к НОК).

4. Уравнять заряды в обеих частях уравнения, добавив к нужной части (левой или правой) необходимые заряды в форме \( \text{H}^+ \) или \( \text{OH}^- \). Конкретный разбор этого пункта смотрите ниже.

5. Уравнять количество атомов \( \text{H} \) в обеих частях уравнения, добавив необходимое количество молекул воды в левую или правую часть.

6. Проверить полученное уравнение на выполнение балансов по всем атомуам, в первую очередь – по кислороду. Если баланс не сходится, вернуться последовательно к предыдущим пунктам.

7. Используя (и не меняя!) полученные коэффициенты, соблюдая материальный баланс по всем элементам, в том числе не входящим в уравнение реакции в краткой ионной форме, записать уравнение ОВР в молекулярной форме.

Теперь рассмотрим связь между ОВР и кислотностью среды – детализируем пункт 4 приведённого выше алгоритма уравнивания ОВР.

Составим уравнения ОВР между \( \text{Na}_2\text{SO}_3 \) и \( \text{KMnO}_4 \) не только в нейтральной среде, без добавления каких-либо кислот или основа-
ний, что уже сделано выше, но и в кислой и щелочной средах. Начнём с кислой среды. Если говорится, что некоторая ОВР в водном растворе «протекает в кислой среде», то подразумевается, что к исходным окислителю и восстановителю добавлена в избытке некоторая кислота, сама не участвующая в окислении / восстановлении. Какая именно кислота – не принципиально, она рассматривается как некий источник протонов. На практике это обычно серная кислота, хотя может быть и азотная, хлорная и т. п. Следует только помнить условие неучастия кислоты непосредственно в ОВ-процессе – чтобы она не окислялась используемым окислителем и не восстанавливалась восстановителем. Поэтому, например, соляная кислота редко используется для подкисления, так как HCl достаточно легко окисляется многими окислителями. Наоборот, азотная кислота может сама окислить некоторые восстановители, и т. п. В дальнейшем будем по умолчанию считать, что подкисление создаётся серной кислотой, а подщелачивание гидроксидом натрия (хотя это не принципиально).

В кислой среде продуктом восстановления перманганата является Мn(2+), т. е. продукты ОВР – МnSO₄ и Н₂SO₄:

\[ \text{Na}_2\text{SO}_3 + \text{KMnO}_4 + \text{H}_2\text{SO}_4 = \text{Na}_2\text{SO}_4 + \text{MnSO}_4 + \ldots \]

1) Окислитель – МnO₄⁻, восстановитель – СO₃²⁻, сопряжённые пары МnO₄⁻ / Мn²⁺ и СO₃²⁻ / СO₄²⁻.

2) \[ \text{SO}_3^{2-} + \text{MnO}_4^{-} + (\text{H}^+) = \text{Mn}^{2+} + \text{SO}_4^{2-} + \ldots \]

3) Сульфит отдаёт два, а перманганат принимает пять электронов; НОК – 10, множители 5 и 2:

\[ 5\text{SO}_3^{2-} + 2\text{MnO}_4^{-} + (\text{H}^+) = 2\text{Mn}^{2+} + 5\text{SO}_4^{2-} + \ldots \]

4) Общий заряд в левой части 12– (без учёта Н⁺), в правой 6+. Но теперь по условию задачи задана кислая среда – следовательно, мы должны манипулировать только положительными зарядами, протонами. Следовательно необходимо добавить 6 протонов в левую часть уравнения *:

* Иногда требуется добавить H⁺ не в левую, а в правую часть уравнения, т. е. кислота может не расходоваться, а образовываться вследствие ОВР – это не противоречит никаким законам природы, и наблюдается для многих ОВР.
5SO₃²⁻ + 2MnO₄⁻ + 6H⁺ = 2Mn²⁺ + 5SO₄²⁻ + ....

5) Добавим в правую часть три молекулы воды для баланса по Н:
5SO₃²⁻ + 2MnO₄⁻ + 6H⁺ = 2Mn²⁺ + 5SO₄²⁻ + 3H₂O.

6) Проверим: слева 23 О, справа тоже 23 О. Уравнение составлено верно:
5SO₃²⁻ + 2MnO₄⁻ + 6H⁺ = 2Mn²⁺ + 5SO₄²⁻ + 3H₂O.

7) Молекулярная форма:
5Na₂SO₃ + 2KMnO₄ + 3H₂SO₄ = 2MnSO₄ + 5Na₂SO₄ + K₂SO₄ + 3H₂O.

В щелочной среде продукт восстановления перманганата – манганат Mn⁶⁺O₄²⁻. Рассмотрим реакцию восстановления перманганата сульфитом для щелочной среды – без подробных комментариев.

1) Окислитель – MnO₄⁻, восстановитель – SO₃²⁻, сопряжённые пары MnO₄⁻ / MnO₄²⁻ и SO₃²⁻ / SO₄²⁻.

2) SO₃²⁻ + MnO₄⁻ + (ОН⁻) = MnO₄²⁻ + SO₄²⁻ + ....

3) Сульфит отдаёт два, а перманганат принимает один электрон; НОК – 2, множители 1 и 2:
1SO₃²⁻ + 2MnO₄⁻ + (ОН⁻) = 2MnO₄²⁻ + 1SO₄²⁻ + ....

4) Общий заряд в левой части 4⁻, в правой 6⁻. Среда щелочная, следовательно, мы должны манипулировать только отрицательными зарядами, ОН⁻. Добавим 2 ОН⁻ в левую часть уравнения:
1SO₃²⁻ + 2MnO₄⁻ + 2OH⁻ = 2MnO₄²⁻ + 1SO₄²⁻ + ....

5) Добавим в правую часть молекулу воды для баланса по Н:
1SO₃²⁻ + 2MnO₄⁻ + 2OH⁻ = 2MnO₄²⁻ + 1SO₄²⁻ + H₂O.

6) Проверим: слева 13 О, справа тоже 13 О. Уравнение составлено верно.

7) Молекулярная форма:
Na₂SO₃ + 2KMnO₄ + 2NaOH = K₂MnO₄ + Na₂MnO₄ + Na₂SO₄ + H₂O.
В табл. 1 обобщены правила применения пункта 4 алгоритма составления уравнений ОВР в водных растворах для разной кислотности среды.

Таблица 1

Составление уравнений ОВР для разной кислотности среды

<table>
<thead>
<tr>
<th>Среда</th>
<th>Кислая</th>
<th>Нейтральная</th>
<th>Щелочная</th>
</tr>
</thead>
<tbody>
<tr>
<td>Что добавляется</td>
<td>H⁺</td>
<td>H⁺ или OH⁻</td>
<td>OH⁻</td>
</tr>
<tr>
<td>В какую часть уравнения добавляется</td>
<td>В левую или правую</td>
<td>Только в правую</td>
<td>В левую или в правую</td>
</tr>
</tbody>
</table>

При добавлении к реагентам кислоты или основания для составления уравнения используется добавление H⁺ или OH⁻ соответственно к продуктам или реагентам, в зависимости от баланса зарядов, т. е. в левую или правую часть уравнения. В нейтральной среде, когда к реагентам ничего не добавляется, можно использовать только правую часть уравнения; окислительно-восстановительные и кислотные процессы часто протекают сопряженно (совместно), поэтому ОВР нередко сопровождаются подкислением или подщелачиванием.

3.2.4. Уравнивание через полуреакции

Можно производить уравнивание через полуреакции. Покажем применение метода полуреакций на уже рассмотренном выше примере реакции

Na₂SO₃ + KMnO₄ + H₂SO₄ = Na₂SO₄ + MnSO₄ + …

Составление полуреакций проводится по тому же алгоритму, что и реакций, только несколько в ином порядке. Ещё раз обратим внимание, что следует использовать реально существующие частицы, т. е. SO₄²⁻, а не S(VI), и т. п.

Запишем полуреакции окисления и восстановления, добавив в каждую необходимое количество принимаемых или отдаваемых электронов:

1) MnO₄⁻ + (H⁺) + 5e⁻ = Mn²⁺ + ….  
2) SO₃²⁻ + (H⁺) − 2e⁻ = SO₄²⁻ + ….

3) Уравниваем заряды (электронейтральность), добавляя необходимое количество H⁺, так как в нашем примере по условию ОВР протекает в кислой среде:
MnO₄⁻ + 8H⁺ + 5e = Mn²⁺ + ....
SO₃²⁻ – 2e = SO₄²⁻ + 2H⁺ ....

При этом оказалось, что протоны требуется добавить в первую полуреакцию в левую часть, а во вторую – в правую.

4) Уравниваем баланс по водороду, добавляя в уравнения необходимое количество молекул H₂O:

MnO₄⁻ + 8H⁺ + 5e = Mn²⁺ + 4H₂O
SO₃²⁻ + 1H₂O – 2e = SO₄²⁻ + 2H⁺.

5) Проверяем баланс по остальным элементам (здесь – только по О) – уравнения полуреакций составлены верно.

6) Из электронного баланса определяем число переносимых e – 10, и ставим коэффициент 2 перед полуреакцией восстановления Ox и 5 перед окислением Red, и складываем полуреакции. Получаем уравнение ОВР в краткой ионной форме с числом переносимых e n = 10:

5SO₃²⁻ + 2MnO₄⁻ + 6H⁺ = 2Mn²⁺ + 5SO₄²⁻ + 3H₂O.

Естественно, коэффициенты в уравнении ОВР такие же, как мы получили выше, в разд. 3.2.3.

Если среда, в которой протекает ОВР, щелочная, то при уравнивании к полуреакциям добавляются гидроксид-ионы OH⁻. Если сре́да нейтральная – в левую часть добавлять заряженные ионы нельзя, уравнивание производится за счётом правой части уравнений полуреакций, добавлением либо Н⁺, либо ОН⁻, как это уже описано в разд. 3.2.3.

Можно использовать и готовые уравнения полуреакций из различных справочных данных по величинам стандартных электродных потенциалов (см. далее разд. 3.3.4). При этом должны быть выполнены следующие условия:

1) Реагенты и продукты должны соответствовать тем, которые приведены в уравнении ОВР.

Так, если требуется уравнять реакцию

HClO₃ + HBr = Cl₂ + Br₂ + H₂O,
то полуреакция ClO₃⁻ + 6e + 6H⁺ = Cl⁻ + 3H₂O не подходит; нужна полуреакция 2ClO₃⁻ + 10e + 12H⁺ = Cl₂ + 6H₂O.

65
2) Кислотность среды должна соответствовать реакционной. Так, если в уравнении ОВР есть щелочь ОН⁻, то в уравнениях полуреакций недопустимы кислоты Н⁺ и наоборот. Например, для приведённой выше ОВР окисления бромистоводородной кислоты хлорноватой кислотой не годится полуреакция 2ClO₃⁻ + 10e + 6H₂O = Cl₂ + 12OH⁻.

3) Для восстановителя (полуреакции окисления восстановителя) в таблицах следует искать обратную реакцию, так как принято приводить все реакции восстановительной форме. Конечно, реально ОВР складывается из восстановительной и окислительной реакций, например:

1) Cu²⁺ + 2e = Cu;
2) Zn – 2e = Zn²⁺;

ОВР – это 1) + 2), Cu²⁺ + Zn = Cu + Zn²⁺, но вторая полуреакция приведена в справочниках в восстановительной форме, Zn²⁺ + 2e = Zn. Поэтому для неё следует искать обратную реакцию.

4) Полуреакции следует складывать (точнее, вычитать из восстановительной окислительную) с коэффициентами, соответствующими электронному балансу, в нашем примере 2 и 5.

5) При переходе к молекулярной форме уравнения следует добавить соответствующие противоионы с нужными коэффициентами.

Например, рассмотрим ОВР

HClO₃ + KBr = Cl₂ + Br₂ + H₂O + ...,

отличающуюся от приведённой выше только заменой НBr на KBr, так что уравнения в краткой ионной форме совпадают:

2ClO₃⁻ + 10Br⁻ + 12H⁺ = Cl₂ + 5Br₂ + 6H₂O.

Но в уравнение второй ОВР в молекулярной форме необходимо прибавить 10K⁺ – следовательно, нужны отрицательные противоионы. Ими могут быть здесь только хлорат-ионы от избытка хлорноватой кислоты:

2ClO₃⁻ + 10Br⁻ + 12H⁺ + 10K⁺ + 10ClO₃⁻ = Cl₂ + 5Br₂ + 6H₂O + 10K⁺ + 10ClO₃⁻, и соответственно уравнения обеих реакций в молекулярной форме:

2HClO₃ + 10HBr = Cl₂ + 5Br₂ + 6H₂O;
12HClO₃ + 10KBr = Cl₂ + 5Br₂ + 10KClO₃ + 6H₂O.

Подход к уравниванию с использованием «готовых» уравнений полуреакций не требует особых знаний по неорганической химии, так как в справочных данных приведены именно реально существующие частицы элементов в разных степенях окисления.
3.3. Гальванический элемент, электродный потенциал

3.3.1. Катод, анод, электродные процессы

Если полураакции окисления – восстановления проводятся без их пространственного разделения, никаких электрических эффектов или процессов не наблюдается. При слиянии растворов Na₂SO₃ и KMnO₄ ОВР

\[ 5\text{Na}_2\text{SO}_3 + 2\text{KMnO}_4 + 3\text{H}_2\text{SO}_4 = 2\text{MnSO}_4 + 5\text{Na}_2\text{SO}_4 + \text{K}_2\text{SO}_4 + 3\text{H}_2\text{O} \]

протекает гомогенно по всему объёму реакционного сосуда.

При помещении в раствор медного купороса цинковой пластинки на ней появляется слой меди – протекает ОВР, более активный цинк вытесняет из раствора менее активную медь(+2) по всей доступной поверхности цинка:

\[
\text{CuSO}_4(\text{вл.}) + \text{Zn(вл.)} = \text{ZnSO}_4(\text{вл.}) + \text{Cu(вл.)}, \text{ или в ионной форме}
\]

\[
\text{Cu}^{2+}(\text{вл.}) + \text{Zn(вл.)} = \text{Zn}^{2+}(\text{вл.}) + \text{Cu(вл.)}.
\]

При этом обе полураакции,

1) \( \text{Cu}^{2+} + 2\text{e} = \text{Cu} \) (восстановление);
2) \( \text{Zn} \rightarrow 2\text{e} = \text{Zn}^{2+} \) (окисление);

также протекают во всех доступных для этого местах, и никакого разделения зарядов и возникновения электрических потенциалов не происходит: в фазе раствора вместо разряжающихся катионов \( \text{Cu}^{2+} \) образуются ионы \( \text{Zn}^{2+} \) с такой же скоростью; к фазе меди добавляются нейтральные атомы, а из фазы цинка, наоборот, удаляются нейтральные атомы.

![Рис. 4. Схема гальванического элемента с мембраной, составленного из цинкового анода в растворе ZnSO₄ и медного катода в растворе CuSO₄](image)

Но если разделить полураакции в пространстве, например, мембраной, не пропускающей катионы, но «прозрачной» для анионов
(полупроницаемой перегородкой), и соединить цинк и медь электрическим проводником, как показано на рис. 4, то происходит следующее.

Окисляющийся цинк уходит из фазы в виде катионов, оставляя в металле избыточные электроны. На цинке возникает отрицательный заряд и соответствующий электрический потенциал $E_2$. Цинк можно назвать отрицательно заряженным электродом, или катодом. В другой половине сосуда для перехода катионов меди в фазу металла, наоборот, требуются электроны. На меди возникает положительный заряд и потенциал $E_1$. Медь — положительно заряженный электрод, анод. Вследствие возникающей разности потенциалов $\Delta E$ в замкнутой цепи возникает ток — электроны двигаются преимущественно от цинка к меди. Разность потенциалов $\Delta E$ называют ещё электродвижущей силой (ЭДС), измеряется в вольтах (В, V).

При вычислении разности потенциалов всегда из потенциала катодной полуреакции (восстановления окислителя, $Ox$) вычитают потенциал анодной (окисления восстановителя, $Red$): $\Delta E = E_k - E_a = E_{Ox} - E_{Red}$. В нашем примере $\Delta E = E_1 - E_2$.

Электронейтральность раствора обеспечивается движением ионов через мембрану. Вследствие протекания полуреакций окисления и восстановления в растворе $\text{ZnSO}_4$ возникает избыток, а в растворе $\text{CuSO}_4$ недостаток положительных зарядов. Для компенсации сульфат-ионы мигрируют через мембрану из раствора $\text{CuSO}_4$ в раствор $\text{ZnSO}_4$, как схематически показано на рис. 4.

Такое устройство было изобретено Л. Гальвани в 1780 г. и в его честь названо гальваническим элементом. Это частный случай химических источников тока (ХИТ), преобразующих энергию ОВР в электрическую энергию. Гальванический элемент — химический источник тока, в котором электрическая энергия вырабатывается в результате прямого преобразования химической энергии окислительно-восстановительной реакции. В состав гальванического элемента входят два электрода: на катоде происходит полуреакция восстановления окислителя; на аноде — полуреакция окисления восстановителя.

В итоге работы гальванического элемента происходит не только ОВР

$$\text{Cu}^{2+}_{\text{в.}} + \text{Zn}_{\text{тв.}} = \text{Zn}^{2+}_{\text{в.}} + \text{Cu}_{\text{тв.}}.$$
но и увеличение концентрации ZnSO₄ и уменьшение концентрации CuSO₄. По мере протекания ОВР потенциалы электродов выравниваются, их разность уменьшается. При достижении равновесия \( \Delta E = 0 \). Таким образом, гальванические элементы могут использоваться для преобразования энергии ОВР в электрическую одноразово, и по мере протекания ОВ-процесса вследствие уменьшения \( \Delta E \) вырабатываемый ток будет уменьшаться (если нагрузка постоянна) и в конце концов прекратится.

Гальванические элементы как конкретные технические устройства могут быть выполнены самым различным образом (некоторые примеры приведены в разделе 3.3.8). В частности, вместо мембран часто используют солевые мостики*, заполненные раствором электролита (KCl, NaCl и т. п.) в пористой среде, по которым катионы (K⁺, Na⁺) перемещаются в катодное пространство, а анионы (Cl⁻ и т. п.) – в анодное (рис. 5).

Принципиальными условиями для работы гальванического элемента являются:

1) разделение протекания полуреакций окисления и восстановления в пространстве;

* Другое название – электролитический ключ.
2) замыкание цепи как для потока электронов, так и противотока ионов.

Разумеется, для протекания самой ОВР должны быть выполнены все термодинамические условия, т. е. в случае самопроизвольного изобарно-изотермического процесса $\Delta G < 0$. Важный и интересный вопрос: можно ли и как определить величину энергии, которую способен выработать гальванический элемент?

3.3.2. Разность электродных потенциалов и энергия Гиббса

Работа по переносу 1 моля электронов равна $F\Delta E$, где $F$ – постоянная Фарадея, равная заряду 1 моля электронов; $F = eN_A$, где $e$ – заряд электрона, $N_A$ – число Авогадро; $F = 96500$ Кл/моль. При равновесном протекании ОВР в гальваническом элементе (бесконечно малом токе) $\Delta E$ равно равновесной разности потенциалов, а работа $F\Delta E$ является полезной работой процесса. Если процесс изобарно-изотермический, то из объединения первого и второго начал термодинамики $F\Delta E = -\Delta G$ в расчёте на 1 моль передаваемых восстановителем окислителю электронов. Если при ОВР переносится $n$ электронов, то

$$\Delta G = -nF\Delta E.$$ 

Это важнейшее выражение, связывающее химический феномен, ОВР, с электрическим.

3.3.3. Разность электродных потенциалов и ОВР

Замечательно, что приведённое выражение распространяется не только на ОВР, протекающие в гальванических элементах, но и для любых способов проведения ОВР. Ведь результат ОВР не меняется от способа её проведения – получим мы медь и соль цинка из цинка и соли меди в гальваническом элементе или поместив цинковую пластину в раствор соли меди (единственное отличие – во втором варианте мы получаем бонус в виде полезной электрической энергии; в первом она диссипируется в тепло). Такая связь между электрической характеристикой, $\Delta E$, которую можно считать функцией состояния системы, и термодинамической функцией $\Delta G$, даёт возможность использовать такие удобные (так как они относительно легко измеримы) параметры, как электродные потенциалы $E$ и их разность $\Delta E$ для описания термодинамики ОВР.
Поэтому мы далее будем обозначать ЭДС для соответствующей ОВР с индексом \( r \), как это принято для таких термодинамических функций, как энталпия реакции \( \Delta_r H \) и энергия Гиббса реакции \( \Delta_r G \), а именно \( \Delta_r E \): \[
\Delta_r G = -nF\Delta_r E.
\]

Напомним, что индекс \( r \) относится к уравнению реакции, т. е. конкретным стехиометрическим коэффициентам, поэтому, например, при удвоении коэффициентов \( \Delta_r G_2 = 2\Delta_r G_1 \). Однако легко показать (сделайте это сами), что при изменении стехиометрических коэффициентов ОВР величины \( \Delta_r E \) не изменяются – причина состоит в нормировке на один электрон (\( \Delta_r G \) и \( \Delta_r E \) связаны через количество переносимых в ОВР электронов \( n \)).

Величины электродных потенциалов в общем зависят от температуры и концентраций участников полуреакции (конкретнее об этом в следующих разделах). Чтобы количественно сравнивать величины \( E \) для разных полуреакций между собой (при одинаковой \( T \)), следует исключить зависимость от концентрации и установить начало отсчёта.

Первое делается так же, как для энергии Гиббса реакции и других термодинамических функций: вводится понятие **стандартного электродного потенциала** \( E^\circ \) – это величина \( E \) для стандартных состояний всех участников полуреакции.

За начало отсчёта принято **стандартный водородный электрод**, т. е. полуреакция

\[
2\text{H}^+ + 2e = \text{H}_2 \text{газ}
\]

при [\( \text{H}^+ \)] = 1 моль/л (т. е. при \( pH = 0 \)) и \( p(\text{H}_2) = 1 \text{ бар} \approx 1 \text{ атм} \). Величина стандартного электродного потенциала этой полуреакции принята за 0. Записывается так: \( E^\circ(\text{H}^+ / \text{H}_2) = 0 \).

Предоставляем читателям самостоятельно убедиться, что величины \( E^\circ \) не зависят от стехиометрических коэффициентов полуреакции: и для полуреакции \( \text{Cu}^{2+} + 2e = \text{Cu} \) и для \( 0,5\text{Cu}^{2+} + e = 0,5\text{Cu} \) величина \( E \) (\( \text{Cu}^{2+/\text{Cu}} \)) одинакова и равна 0,34 В (подсказка – воспользуйтесь уравнением, связывающим \( E^\circ \) и \( \Delta_r G^\circ \)).

Аналогично стандартному электродному потенциалу \( E^\circ \) для полуреакций вводится **понятие стандартной разности электродных потенциалов** (или **стандартной ЭДС**) \( \Delta_r E^\circ \) – это разность стан-

* Напомним, что стандартные состояния растворённых веществ – в виде идеального раствора при концентрации 1 моль/л, газов – в виде идеального газа при парциальном давлении 1 атм. 
дартных электродных потенциалов составляющих ОВР полуреакций,

\[ \Delta_rE^\circ = E^\circ_{Ox} - E^\circ_{Red}. \]

Почему вычитается именно потенциал восстановителя (анодный) из потенциала окислителя (катодного), разъяснено ниже, в разд. 3.3.4.
Поскольку \( \Delta_rG = -nF\Delta_rE \), то и \( \Delta_rG^\circ = -nF\Delta_rE^\circ \).

3.3.4. Представление стандартных электродных потенциалов в виде таблиц

В справочных таблицах и базах данных принято записывать все полуреакции в катодной форме, т. е. для восстановления окислителя, чтобы электроны находились в левой части уравнения с положительным стехиометрическим коэффициентом:

- \( \text{Cl}_2 + 2e = 2\text{Cl}^- \);
- \( \text{ClO}_3^- + 6e + 3\text{H}_2\text{O} = \text{Cl}^- + 6\text{OH}^- \);
- \( \text{Fe}^{2+} + 2e = \text{Fe} \) и т. п.

Поэтому для вычисления разности электродных потенциалов из величины потенциала окислителя вычитается потенциал восстановителя. ОВР реакция возможна, если разность электродных потенциалов \( \Delta_rE > 0 \). Величины электродных потенциалов, \( E \), и ЭДС, \( \Delta_rE \), зависят от концентрации, в отличие от стандартных потенциалов, \( E^\circ \), и стандартной ЭДС, \( \Delta_rE^\circ \). Знак «\(^\circ\)» означает стандартное состояние (концентрацию растворенных веществ 1 моль/л в идеальном растворе и парциальное давление 1 бар \( \approx 1 \text{ атм} \) для газообразных веществ). В общем случае \( \Delta_rE \neq \Delta_rE^\circ \), связь между ними задаётся уравнением Нёрнста; \( \Delta_rE = \Delta_rE^\circ \) только при всех концентрациях растворённых веществ по 1 моль/л и давлениях газообразных 1 атм.

3.3.5. Уравнение Нёрнста

Зависимость электродного потенциала от концентраций всех участников электродного процесса (полуреакции восстановления или окисления) и разности потенциалов в гальваническом элементе от концентраций всех участников ОВР задаётся уравнением Нёрнста. Это уравнение является следствием уравнения изотермы химического процесса и связи между энергией Гиббса и ЭДС (\( \Delta E \)).

Напомним уравнение изотермы химического процесса:

\[ \Delta_rG = \Delta_rG^\circ + RT\ln\Pi, \]
где \( \Delta_r G \) – энергия и \( \Delta_r G^\circ \) – стандартная энергия Гиббса процесса соответственно, \( P \) – произведение реакции, включающее равновесные концентрации всех компонентов в фазе переменного состава в степенях, равных их стехиометрическим коэффициентам. Уравнение изотермы показывает, что энергия Гиббса реакции складывается из двух слагаемых: первое, \( \Delta_r G^\circ \), не зависит от концентраций; второе, \( R T \ln P \), определяет зависимость энергии Гиббса от концентраций. Это уравнение справедливо для любых равновесных процессов, описывающих стехиометрическими уравнениями. Например, для полуреакции восстановления окислителя (катодный процесс)

\[
\Delta_r G_{Ox} = \Delta_r G_{Ox}^\circ + R T \ln P_{Ox},
\]

а для полуреакции окисления восстановителя (анодный процесс)

\[
\Delta_r G_{Red} = \Delta_r G_{Red}^\circ + R T \ln P_{Red}.
\]

Так как суммарная ОВР получается вычитанием анодного процесса из катодного *, то для полной ОВ-реакции

\[
\Delta_r G = \Delta_r G_{Ox} - \Delta_r G_{Red} + (RT) \ln (P_{Ox}/P_{Red}).
\]

С другой стороны, для любых ОВ-реакций и полуреакций энергия Гиббса связана электродными потенциалами через множитель \( -nF \):

для катодной полуреакции (восстановления окислителя)

\[
\Delta_r G_{Ox} = -n_1 F E_{Ox},
\]

\( n_1 \) – количество принимаемых окислителем электронов;

для анодной полуреакции (окисления восстановителя)

\[
\Delta_r G_{Red} = -n_2 F E_{Red},
\]

\( n_2 \) – количество отдаваемых восстановителем электронов.

Для суммарной ОВР

\[
\Delta_r G = -n F \Delta_r E,
\]

\( n \) – количество переносимых при ОВР (принимаемых окислителем и отдаваемых восстановителем электронов).

Поделив обе части уравнения на \( -nF \),

\[
\Delta_r G = \Delta_r G_{Ox} - \Delta_r G_{Red} + R T \ln (P_{Ox}/P_{Red})
\]

получим уравнение Нёрнста:

\[
\Delta_r E = \Delta_r E^\circ + (RT/nF) \ln (P_{Ox}/P_{Red}),
\]

* Принято записывать любые полуреакции в катодной форме, т. е., \( Cu^{2+} + 2e = Cu, \ E^\circ(Cu^{2+}/Cu) = 0,34 \) В; \( Zn^{2+} + 2e = Zn, \ E^\circ(Zn^{2+}/Zn) = -0,76 \) В. Для реакции \( Cu^{2+} + Zn = Cu + Zn^{2+} \)

\[
\Delta_r E^\circ = E^\circ_{Ox} - E^\circ_{Red} = 0,34 - (-0,76) = 1,10 \) В.
где $\Pi_{Ox}$ и $\Pi_{Red}$ – произведения реакции для электродных полупроцессов, катодного (восстановления окислителя $Ox$) и анодного, (окисления восстановителя $Red$, соответственно).

Для $T=298$ К часто используют выражение с десятичным логарифмом вместо натурального:

$$\Delta_rE = \Delta_rE^\circ + (0,059/n)\log(\Pi_{Ox}/\Pi_{Red})$$

Отметим, что первое выражение более общее, оно применимо для любой температуры; второе применимо только при $T=298$ К. Разумеется, величины стандартных электродных потенциалов $E^\circ$ зависят от температуры, и существенно. Обычно в распространенными справочными изданиях приводятся только значения стандартных электродных потенциалов $E_{298}^\circ$ для стандартных условий, т. е. для $T=298$ К. Если отсутствуют упоминания о температуре, то по умолчанию её принимают равной 298 К.

Покажем применение уравнения Нёрнста на конкретном примере. Рассчитаем величины электродных потенциалов и ЭДС гальванического элемента, составленного из медной пластинки, помещённой в 0,01 М раствор соли меди и цинковой в 0,1 М растворе соли цинка.

(1) $\text{Cu}^{2+} + 2e = \text{Cu}$;

$$E_1 = E^\circ(\text{Cu}^{2+}/\text{Cu}) + (RT/2F)\ln0,01 = E^\circ(\text{Cu}^{2+}/\text{Cu}) + (0,059/2)\log0,01 = 0,28 \text{ В};$$

(2) $\text{Zn}^{2+} + 2e = \text{Zn}$,

$$E_2 = E^\circ(\text{Zn}^{2+}/\text{Zn}) + (RT/2F)\ln0,1 = E^\circ(\text{Zn}^{2+}/\text{Zn}) + (0,059/2)\log0,1 = -0,79 \text{ В}.$$  

$$\Delta_rE = E_{Ox} - E_{Red} = E_1 - E_2 = 0,28 - (-0,79) = 1,07 \text{ В}.$$  

Вычисленная величина отличается от стандартной ЭДС $\Delta_rE^\circ = 1,10 \text{ В}$ незначительно, на 0,03 В. Но для некоторых других $Ox/Red$ пар отличия значительнее, а в некоторых случаях, когда величина $\Delta_rE^\circ$ невелика, не более 0,1–0,2 В по модулю, изменения концентраций могут даже обратить протекание ОВР в гальваническом элементе – катод станет анодом, и наоборот. Убедитесь в этом сами, рассмотрев, например, процесс $\text{Pb}^{2+} + \text{Sn} = \text{Sn}^{2+} + \text{Pb}$.

3.3.6. Концентрационный гальванический элемент

Возможно составить гальванический элемент, в котором на электродах будет протекать одна и та же реакция (разумеется, в разных направлениях), если концентрации в катодном и анодном пространстве будут различны. Такие гальванические элементы называются концентрационными гальваническими элементами.

* $(8,31 \times 298 \times \ln10)/96\ 500 = 0,059$. 

74
ционными. Например, если у первого электрода концентрация соли меди 1 моль/л, а у второго 0,01 моль/л, то \( \Delta E = (0,059/2)\log(1/0,01) = 0,059 \) В – величина небольшая, но вполне измеримая.

Именно на принципе работы концентрационного элемента устроены приборы для измерения pH растворов – pH-метры. На специальном (платиновом, стеклянном и других конструкций) электроде протекает полуреакция восстановления ионов водорода:

\[
2\mathrm{H}^+ + 2e = \mathrm{H}_2(\text{газ})
\]

Рис. 6. Схема устройства водородного концентрационного элемента

Именно величина потенциала стандартного водородного потенциала при \( T = 298 \) К принята равной 0, и от неё отчитываются все остальные потенциалы. На рис. 6 приведена схема водородного концентрационного элемента, в котором один из электродов помещён в раствор соляной кислоты, а второй в щёлочь. Если концентрация отлична от стандартной, на водородном электроде возникает потенциал, который и измеряют. Величина потенциала связана с концентрацией \( \mathrm{H}^+ \) и величиной \( pH \) уравнением Нёрнста:

\[
E = E^0 + (0,059/2)\log((\mathrm{H}^+)^2/p(\mathrm{H}_2)) = 0,059\log[\mathrm{H}^+] = -0,059pH.
\]

Здесь подразумевается, что \( p(\mathrm{H}_2) \approx 1 \) атм.

3.3.7. Электролиз

Электролиз – это ОВР, протекающие вследствие действия электрического тока на электродах, при этом на катоде проис-
ходит восстановительная, а на аноде окислительная полурае-
кция*. Электролиз – это процесс, обратный процессу в гальваниче-
ском элементе. Если в гальваническом элементе вследствие разделе-
ния полураений в пространстве при самопроизвольном протекании
ОВР на электродах возникает разность электрических потенциалов,
что даёт возможность получить электрический ток при замыкании
цепи, то при электролизе, наоборот, ток вызывает раздельное проте-
кание полураений на электродах и в целом – ОВР.

Процессы электролиза широко применяются не только для заряд-
ки аккумуляторов различных бытовых девайсов, но и в лабораторной
практике и для производства многих веществ – ряда металлов, хлора
и т. п. Электролиз возможен для электролитов – в растворах или рас-
плавах (последние выходят за рамки тематики пособия).

Рассмотрим пример электролиза водного раствора NaCl – так
получают в промышленности хлор. Какие процессы происходят на
пространственно разделённых (это непременное условие!) электрор
дах? Казалось бы, на катоде должен восстанавливаться Na\(^+\) с выде-
лением металла, а на аноде Cl\(^-\) окисляться до Cl\(_2\)\(^\cdot\)? Так действитель-
но происходит в расплаве NaCl. Но в водном растворе имеется вода,
и возможна полурация

\[ 2\text{H}_2\text{O} + 2e = \text{H}_2 + 2\text{OH}^- \quad E^\circ(\text{OH}^-/\text{H}_2) = -0,823 \text{ B}. \]

Её стандартный потенциал намного выше, чем \(E^\circ(\text{Na}^+/\text{Na}) = 2,71 \text{ B}\),
поэтому реально протекает именно восстановление водорода, а не на-
трия (собственно, это можно было увидеть из ряда напряжений мета-
ллов, где Na располагается левее водорода).

Анодный процесс, \(2\text{Cl}^- - 2e = \text{Cl}_2, \quad E^\circ(\text{Cl}_2/\text{Cl}^-) = 1,36 \text{ B} \).

Эта полурация конкурирует в водных растворах с окислением
воды до кислорода, \(\text{O}_2 + 2\text{H}_2\text{O} + 4e = 4\text{OH}^- \), \(E^\circ(\text{O}_2/\text{OH}^-) = 0,40 \text{ B}. \)
Поскольку 1,36 > 0,40, то на аноде в первую очередь будет окис-
ляться хлор, а не кислород.

Сложив полурации, получим полное уравнение ОВР при элек-
тролизе водного раствора NaCl:

\[ 2\text{Na}^+ + 2\text{Cl}^- + 2\text{H}_2\text{O} = 2\text{Na}^+ + \text{Cl}_2 + \text{H}_2 + 2\text{OH}^- , \]

или в молекулярной форме

* Полезное мнемоническое правило: на аноде анионы окисляются все
слова начинаются с гласных; на катоде катионы восстанавливаются – с
согласных.
2NaCl + 2H₂O = 2NaOH + Cl₂ + H₂.

Для этой ОВР \( \Delta E^\circ = E^\circ_{\text{Ox}} - E^\circ_{\text{Red}} = -0,823 - 1,36 = -2,183 \text{ В} < 0 \) – самопроизвольное протекание (для стандартных состояний) запрещено, и протекает она исключительно за счёт подвода к реагирующей системе внешней электрической энергии.

Заметим, что кроме хлора, образуется ещё два полезных продукта – водород и гидроксид натрия.

Масса \( m \) вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду \( Q = I \cdot t \), прошедшему через электролит:

\[
m = k \cdot I \cdot t,
\]

если через электролит пропускается в течение времени \( t \) постоянный ток \( I \). Коэффициент пропорциональности \( k \) называется электрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества: \( k = M/zF \), где \( M \) – молекулярная масса, \( z \) – количество переносимых электронов (в частном случае выделения металла – заряд катиона), \( F \) – постоянная Фарадея. В итоге выражение закона Фарадея

\[
m = I \cdot t \cdot M/Fz,
\]

или в молях \( n \)

\[
n = I \cdot t/Fz.
\]

3.3.8. Химические источники тока

Химические источники тока (ХИТ) – устройства, преобразующие энергию ОВР в электрическую энергию, подразделяются на три типа: гальванические элементы, аккумуляторы и топливные элементы.

Как уже говорилось выше, гальванические элементы – одноразовые ХИТ (ещё их называют первичными гальваническими элементами). Для возобновления их работы требуется добавить реагенты / убрать продукты реакции, возобновить, если требуется, материал самих электродов. Некоторые конструкции используемых гальванических элементов приведены на рис. 7 и 8.

В современных реальных гальванических элементах величина ЭДС варьируется от 1,5 (марганец – цинковые, никель – кадмивые и др.) до 4 В (литий – ионные).
3.3.8.1. Аккумуляторы

В разделе 3.3.1 уже рассмотрено, что ЭДС первичных гальванических элементов по ходу их работы падает и при достижении равновесия становится равным 0, что ограничивает их применение.

Однако давно создан и широко применяется другой тип химических источников тока — аккумуляторы. Заметим, что знакомые всем батарейки — это и есть разновидность гальванических элементов, а аккумуляторы всевозможных типов и размеров — гальванические элементы с возможностью их многоразового использования, т. е. проведения циклов разрядка ↔ зарядка.

Рис. 7. Устройство марганец-цинкового гальванического элемента

С точки зрения химии, разрядка — самопроизвольное протекание ОВР, химическая энергия которой преобразуется в полезную работу устройства, которое работает от аккумулятора; зарядка — принудительное проведение за счёт электрической энергии от электросети обратной ОВР (электролиза), и запасание таким образом химической энергии для новой разрядки.

В таком случае, полуреакция восстановления протекает на катоде, а полуреакция окисления на аноде, и называются они электродными процессами. В результате протекания ОВР в электрической цепи гальванического элемента возникает разность потенциалов, и, следовательно, при замыкании цепи течёт электрический ток. Способов преобразования энергии электрического тока в полезную работу известно много, что даёт возможность использовать гальвани-
Ческие элементы (точнее, принцип их работы) в качестве источников тока для различных устройств.

Наиболее распространённый тип аккумулятора – автомобильные свинцовые кислотные. Элемент свинцово-кислотного аккумулятора состоит из электродов (положительных и отрицательных) и разделительных пористых пластин, изготовленных из материала, невзаимодействующего с кислотой, препятствующих замыканию электродов (сепараторов), которые погружены в электролит, раствор серной кислоты с плотностью 1,23 г/мл. Электроды представляют собой плоские решётки из металлического свинца. В эти решётки запрессованы порошки диоксида свинца (PbO₂) – в анодных пластинах и металлического свинца – в катодных пластинах. Применение порошков увеличивает поверхность раздела электролит – твёрдое вещество, тем самым увеличивает плотность тока (электрическую ёмкость аккумулятора).

Электродные полуреакции:
\[
PbO_2 + 2e + 4H^+ + SO_4^{2-} = PbSO_4 + 2H_2O \quad \text{на катоде, } E^{\circ}_{\text{Ox}} = 1,68 \text{ В;}
\]
\[
PbSO_4 + 2e = Pb + 2SO_4^{2-} \quad \text{на аноде, } E^{\circ}_{\text{Red}} = -0,36 \text{ В}
\]

Рис. 8. Устройство водородно-никелевого гальванического элемента
(записано, как принято, в катодной форме; реально при разрядке протекает обратный процесс, \( \text{Pb} + 2\text{SO}_4^{2–} – 2e = \text{PbSO}_4 \)).

Здесь используется то, что сульфат свинца(+2) – труднорастворимое соединение, \( K_{L} = 10^{-8} \), поэтому стандартный потенциал восстановления \( E^\circ(\text{PbSO}_4/\text{Pb}) = –0,36 \text{ В} \) отличается от потенциала \( \text{Pb}^{2+} \).

\[ E^\circ(\text{Pb}^{2+}/\text{Pb}) = –0,13 \text{ В} \]

Стандартная ЭДС \( \Delta E^\circ = 1,68 – (–0,36 \text{ В}) = 2,04 \text{ В} \), но так как концентрация серной кислоты в электролите примерно 30 % мас., что выше, чем 1 моль/л, то и величина ЭДС несколько выше. Естественно, для получения более высокого напряжения в сети автомобилей единичные гальванические элементы соединяются должным образом по 6 или 12, чтобы получить 12 или 24 В.

При работе аккумулятора (разрядке) на катоде расходуется диоксид свинца и серная кислота и образуется сульфат свинца(+2), на аноде расходуется сульфат свинца и выделяется металлический свинец. Таким образом, вследствие расхода компонентов, прежде всего – уменьшения концентрации кислоты, ЭДС элемента уменьшается. При достижении некоторой критически малой величины ЭДС требуется перезарядка аккумулятора и доливка кислоты.

Зарядка аккумулятора с точки зрения химии – процесс электролиза. При этом вследствие затраты энергии от внешней электрической сети происходят обратные химические процессы – электрический ток окисляет \( \text{PbSO}_4 \) до \( \text{PbO}_2 \) на первом электроде и восстанавливает \( \text{PbSO}_4 \) до \( \text{Pb} \) на втором – и элемент снова готов к работе.

3.3.8.2. Топливные элементы

Ещё один тип ХИТ – топливные элементы, в которых происходит непрерывная подача окислителя и восстановителя в рабочие пространства электродов, и таким образом обеспечивается непрерывное поддержание необходимой величины ЭДС. В последние 20-25 лет идёт интенсивная исследовательская и технологическая работа по созданию экономичных и экологичных водородных топливных элементов. В водородном элементе (рис. 9 и 10) на катоде восстанавливается кислород

\[ \text{O}_2 + 4e + 4\text{H}^+ = 2\text{H}_2\text{O}; \]

на аноде окисляется водород

\[ 2\text{H}_2 – 4e = 4\text{H}^+. \]
Однако широкого распространения такие ХИТ пока не получили – прежде всего по причине отсутствия в природе сколько-нибудь значительных количеств свободного водорода(0).

3.4. Применение электродных потенциалов

Рис. 9. Схема водородного топливного элемента

Рис. 10. Устройство водородного топливного элемента значительных количеств свободного водорода(0).
для оценки направления ОВР

Определение возможного направления протекания ОВР основано на первых принципах (началах) термодинамики: самопроизвольные изобарно-изотермические процессы разрешены, если \( \Delta_rG < 0^* \). Эквивалентный критерий: \( K > 1 \). Так как для ОВР \( \Delta_rG = -nF\Delta_rE \), то для них добавляется ещё один удобный критерий: ОВР разрешены, если \( \Delta_rE > 0 \).

3.4.1. Направление протекания ОВР для стандартных состояний

Наиболее просто оценить разрешённое направление протекания ОВР для стандартных состояний ** всех участников реакции. Для этого достаточно определить знак стандартной ЭДС (разности стандартных электродных потенциалов окислителя и восстановителя), которые известны для большого количества веществ и сведены в справочники и базы данных.

Рассмотрим два примера определения направления ОВР для стандартных состояний.

Пример 1. Определить, возможна ли ОВР
\[ \text{Cd}^{2+} + \text{Pb}^{2+} = \text{Cd} + \text{Pb}^{2+}. \]

Из справочных данных величины стандартных электродных потенциалов \( E^\circ(\text{Cd}^{2+}/\text{Cd}) = -0,40 \) В, \( E^\circ(\text{Pb}^{2+}/\text{Pb}) = -0,13 \) В. Окислитель здесь по условию задачи – из вида приведённого уравнения ОВР – \( \text{Cd}^{2+} \). Стандартная разность потенциалов \( \Delta_rE^\circ = (-0,40) - (-0,13) = -0,27 \) В < 0 – следовательно, такая реакция запрещена для стандартных состояний, разрешена обратная ОВР, окисление кадмия 1 М раствором солей свинца(+2).

Пример 2. Определить, возможно ли окисление железом(+3) иодида до иода(0) и бромида до брома(0), если \( E^\circ(\text{Fe}^{3+}/\text{Fe}^{2+}) = 0,77 \) В, \( E^\circ(\text{I}_2/\text{I}^-) = 0,54 \) В; \( E^\circ(\text{Br}/\text{Br}) = 1,09 \) В.

---

* Подчёркнём – именно \( \Delta_rG^\circ \)! Если \( \Delta_rG^\circ < 0 \), то разрешена реакция для стандартных состояний всех участников реакции.

** Не путайте стандартные состояния компонентов (концентрации 1 моль/л для растворённых веществ в состоянии идеального раствора, парциальное давление 1 бар ≈ 1 атм для газообразных веществ в состоянии идеального газа, и стандартные условия (298 К, 1 атм).
Для реакции $2\Gamma + 2\text{Fe}^{3+} = \text{I}_2 + 2\text{Fe}^{2+}$ $\Delta_r E^\circ = 0,77 - 0,54 = 0,23 \text{ B} > 0$ – следовательно, эта реакция разрешена для стандартных (т. е. одномолярных) концентраций всех компонентов. Однако подобное окисление бромида до брома для стандартных состояний запрещено: $\Delta_r E^\circ = 0,77 - 1,09 = -0,32 \text{ B} < 0$.

При использовании величины $\Delta_r E^\circ$ в качестве критерия для оценки возможности протекания ОВР часто не делают оговорки, что такая оценка справедлива только для стандартных состояний всех участников реакции. Для многих ОВР $\Delta_r E^\circ \sim 1 \text{ B}$, и в таких случаях изменение концентраций участников ОВР (кроме изменения $pH$ среды, если в ОВР участвуют $\text{H}^+$ или $\text{OH}^-$, о чём речь пойдет в разд. 3.6.5) меняют $\Delta_r E$ незначительно, и корректно оценивать разрешённое направление реакции по $\Delta_r E^\circ$, без использования уравнения Нёрнста. Если же $\Delta_r E^\circ \sim 0,1 \text{ B}$, то изменение концентраций может обратить направление ОВР, и без использования уравнения Нёрнста обойтись нельзя.

3.4.2. Направление протекания ОВР для произвольных концентраций

Общий критерий равновесия для изобарно-изотермических процессов – $\Delta_r G = 0$; при $\Delta_r G < 0$ разрешены прямые процессы, при $\Delta_r G > 0$ обратные. Для ОВР прямые процессы разрешены при $\Delta_r E > 0$. Величина $\Delta_r E$ для произвольных концентраций участников ОВР легко определяется из справочных стандартных потенциалов $E^\circ$ с помощью уравнения Нёрнста (см. разд. 3.3.5):

$$\Delta_r E = \Delta_r E^\circ + \left(\frac{RT}{nF}\right) \ln(\Pi_{\text{Ox}}/\Pi_{\text{Red}}),$$

или для $T = 298 \text{ K}$ через десятичные логарифмы

$$\Delta_r E = \Delta_r E^\circ + (0,059/n) \log(\Pi_{\text{Ox}}/\Pi_{\text{Red}}).$$

Рассмотрим определения направления ОВР для произвольных концентраций на нескольких примерах.

**Пример 1.** Определить, возможна ли ОВР

$\text{Cd}^{2+}_{\text{в.}} + \text{Pb}_{\text{тв.}} = \text{Cd}_{\text{тв.}} + \text{Pb}^{2+}_{\text{в.}}$

при $[\text{Pb}^{2+}] = 10^{-4} \text{ моль/л}$, $[\text{Cd}^{2+}] = 2 \text{ моль/л}$.

Определим из уравнения Нёрнста потенциалы полуреакций:

$\text{Cd}^{2+} + 2e = \text{Cd},$

$E_{Ox} = E_{Ox}^\circ + (0,059/n) \log(2/1) = -0,40 + (0,059/2)\log2 = -0,39 \text{ B}.$

$\text{Pb}^{2+} + 2e = \text{Pb}$ - обратите внимание, все полуреакции пишем в катодной форме!


$$E_{Red} = E_{Red}^o + (0,059/n) \log(10^{-4}/1) = -0,13 + (0,059/2)\log10^{-4} = -0,25 \text{ B}.$$ 

Разность потенциалов \( \Delta E = E_{Ox} - E_{Red} = -0,14 \text{ B} < 0 \) — следовательно, прямая реакция запрещена, разрешена обратная.

Можно не вычислять по отдельности величины потенциалов для полуреакций, и сразу применить уравнение Нёрнста к уравнению реакции ОВР:

$$\Delta E = \Delta E^o + (0,059/n) \log([Cd^{2+}]/[Pb^{2+}]) =$$

$$= (-0,40) - (-0,13) + (0,059/2) \log(2/10^{-4}) = -0,27 + 0,13 = -0,14 \text{ B}.$$ 

Естественно, что результат получился тем же самым.

Пример 2. Определить, при каком соотношении концентраций \([Cd^{2+}]/[Pb^{2+}]\) возможна реакция \(Cd^{2+}_{\text{в.}} + Pb_{\text{тв.}} = Cd_{\text{тв.}} + Pb^{2+}_{\text{в.}}\)?

Из уравнения Нёрнста \( \log([Cd^{2+}]/[Pb^{2+}]) = [n \ (\Delta E - \Delta E^o)] / 0,059 = 2:0,13/0,059 = 4,41 \) и \([Cd^{2+}]/[Pb^{2+}] = 25 \ 500\). Отытм, что реально создать такую разность концентраций можно только в таком случае, если концентрация свинца будет низкой, менее \(10^{-4}\) моль/л.

Пример 3. Определить, возможна ли ОВР

\[2\text{KI}_\text{в.} + Fe_2(\text{SO}_4)_3\text{в.} = I_2\text{тв.} + 2\text{FeSO}_4\text{в.} + K_2\text{SO}_4\text{в.}\]

при следующих концентрациях, в моль/л: \([\text{Fe}_2(\text{SO}_4)_3] = 0,5; [\text{KI}] = 0,1; [\text{FeSO}_4] = 0,01; I_2 - в избытке.

Все четыре соли в уравнении реакции — сильные электролиты, так что уравнение реакции в краткой ионной форме выглядит так:

\[2\Gamma + 2\text{Fe}^{3+} = I_2 + 2\text{Fe}^{2+}\].

Уравнение Нёрнста для этой реакции

$$\Delta E = \Delta E^o + (0,059/n) \log([\Gamma ]^2[\text{Fe}^{3+}]^2/[\text{Fe}^{4+}]) = 0,23 + (0,059/2) \log(0,1^2 \cdot 1^2/0,01^2) =$$

$$= 0,23 + 0,06 = 0,29 \text{ B} > 0$$ — следовательно, разрешено прямое направление ОВР при указанных выше концентрациях компонентов.

3.4.3. Использование диаграмм Латимера для определения направление протекания ОВР

Более компактная по сравнению с уравнениями полуреакций форма представления стандартных электродных потенциалов — диаграмма Латимера, представляющая собой величины потенциалов, вписанные между формами элемента в разных степенях окисления. Например, для соединений хлора в кислой среде \((pH = 0)\)

\[
\begin{array}{ccc}
1,19 & 1,43 & 1,63 & 1,36 \\
\end{array}
\]

* \([\text{Fe}_2(\text{SO}_4)_3] = 0,5 \text{ моль/л} \) соответствует \([\text{Fe}^{3+}] = 1 \text{ моль/л} \).
Число 1,19 между ClO$_4^-$ и ClO$_3^-$ означает, что $E^\circ \ ClO_4^-/(ClO_3^-) = 1,19$ В, т. е. для полуреакции ClO$_4^-$ + 2e + 2H$^+ = ClO_3^- + H_2O$ $E^\circ = 1,19$ В. Здесь соблюдены правила записи форм, принятой для уравнений в ионной форме: Cl(+7), Cl(+5) и (Cl$^-$) приведены в кислой среде в форме соответствующих ионов (перхлората, хлората и хлорида), так как соответствующие кислоты – сильные. Наоборот, для Cl(+1) приведена кислота, HClO, так как она слабая и существует в основном в недиссоциированной форме.

Особенно удобно использовать диаграммы Латимера для определения возможности диспропорционарирования. Ниже приведена диаграмма Латимера для форм хлора в щелочной среде (pH = 14).

Отмечено потенциалы на диаграмме уменьшаются слева направо, по мере уменьшения степени окисления. Но для Cl$_2$ число справа больше числа слева – из этого следует, что хлор в щелочной среде может диспропорционарировать (для стандартных состояний компонентов). Докажем это.

Реакция диспропорционарирования хлора до Cl$^-$ и ClO$^-$:
Cl$_2$ + 2OH$^-$ = Cl$^-$ + ClO$^-$ + H$_2$O.
Она складывается из полуреакций
1) Cl$_2$ + 2e = 2Cl$^-$ – Cl$_2$ как окислитель;
2) 2ClO$^-$ + 2e + H$_2$O = Cl$_2$ + 2OH$^-$ – Cl$_2$ как восстановитель.

$\Delta E^\circ = E^\circ_{Ox} - E^\circ_{Red} = 1,36 - 0,40 = 0,96$ В > 0 – следовательно, действительно диспропорционарирование хлора до Cl$^-$ и Cl(+1) в щелочной среде разрешено.

Из диаграммы Латимера хлора для кислой среды, приведенной в начале этого раздела, видно, что потенциал справа 1,36 В меньше, чем потенциал справа 1,63 В. Следовательно, в кислой среде реакция диспропорционарирования хлора (для стандартных состояний) Cl$_2$ + H$_2$O = HCl + HClO термодинамически запрещена, в отличие от диспропорционарирования в щелочной среде. Равновесие сдвинуто в сторону реагентов –
хлор в водном растворе существует в основном в виде сольватированных молекул Cl₂, концентрации HCl и HClO незначительны.

3.4.4. Вычисление $E^\circ$ через линейную комбинацию известных $E^\circ$

Приведённая в начале раздела 3.4.3 диаграмма неполна, в частности, на ней отсутствует Cl(+3). Но из четырёх приведённых величин стандартных потенциалов для четырёх полуреакций можно легко получить ещё пять, для всех возможных превращений между пятью указанными формами хлора. Покажем это на примере вычисления стандартного потенциала $E^\circ (\text{ClO}_3^-/\text{Cl}_2) = E^\circ_3$, указанного на диаграмме знаком вопроса. Пусть $E^\circ (\text{ClO}_3^-/\text{HClO}) = E_1^\circ$, $E^\circ (\text{HClO}/\text{Cl}_2) = E_2^\circ$. Вспомним, что $\Delta E^\circ = -(\Delta G^\circ/nF)$ и что $\Delta G^\circ_3 = \Delta G^\circ_1 + \Delta G^\circ_2$. Тогда (нельзя суммировать $E^\circ$, нужно суммировать $nE^\circ$) получим, что $E_3^\circ = (n_1E_1^\circ + n_2E_2^\circ)/n_3 = -(4\cdot1,43 + 1,63)/5 = 1,47$ В. Аналогично можно вычислить любой иной стандартный потенциал для полуреакций между указанными на диаграмме формами хлора.

3.5. Распространённые окислители и восстановители

3.5.1. Сравнение силы окислителей и восстановителей

Сила окислителя характеризуется соответствующим стандартным окислительно-восстановительным (по более распространённой терминологии – электродным) потенциалом $E^\circ$ по отношению к стандартному водородному электроду (пара Н⁺/Н₂), потенциал которого принят равным нулю. Чем больше потенциал пары, тем сильнее окислитель и слабее восстановитель, чем потенциал меньше, тем сильнее восстановитель. Например, самый сильный окислитель – это молекулярный фтор, F₂(0), величина стандартного электродного потенциала $E^\circ(F_2/F^-) = 2,87$ В. Восстановленная форма F(−1) (в таких соединениях, как KF, HF, PF₅, и т. п.) является самым слабым восстановителем. Для сравнения приведём несколько значений стандартных электродных потенциалов: $E^\circ(\text{Cl}_2/\text{Cl}^-) = 1,36$ В; $E^\circ(\text{MnO}_4^- / \text{Mn}^{2+}) = 1,53$ В; $E^\circ(\text{Ag}^+/\text{Ag}) = 0,80$ В; $E^\circ(\text{Fe}^{3+}/\text{Fe}^{2+}) = 0,77$ В. Самый сильный восстановитель – металлический литий, $E^\circ(\text{Li}^+/\text{Li}) = -3,05$ В. Данные по огромному количеству стандартных электродных потенциалов све- дены в справочные издания и базы данных.
Таким образом, максимально возможная (для стандартных состояний) ЭДС для единичного гальванического элемента составляет 2,87 – (–3,05) = 5,92 В. Можно несколько увеличить эту величину за счёт концентрационного слагаемого в уравнении Нёрнста, но всё равно предельная ЭДС единичного элемента остаётся ~6В.

Описание ОВР в терминах электродных потенциалов универсально и не зависит от того, каким способом проводят реакцию – в гальваническом элементе с раздельным протеканием восстановительной (катодной) и окислительной (анодной) полуреакций или обычным образом, без пространственного разделения полуреакций. Энергетические и термодинамические характеристики ОВ реакции не зависят от способа её проведения. Поэтому по величине разности стандартных электродных потенциалов сопряжённых пар $\Delta E^\circ$ (ЭДС) можно судить о возможности протекания любой ОВР (для стандартных состояний всех компонентов, т. е. при концентрациях 1 моль/л).

Отметим, что полуреакции восстановления одного и того же окислителя до разных степеней окисления имеют, естественно, разные электродные потенциалы, например: $E^\circ(\text{SO}_4^{2-}, \text{H}^+/\text{SO}_2)=0,159$ В, а $E^\circ(\text{SO}_4^{2-}, \text{H}^+/	ext{H}_2\text{S})=0,309$ В (среда в обоих случаях кислая).

В одном и том же соединении в зависимости от реагентов и условий проведения реакции окислительно-восстановительные свойства могут проявлять разные элементы. Например, разбавленная серная кислота реагирует с цинком с выделением водорода:

$$\text{H}_2\text{SO}_4\text{в.} + \text{Zn} = \text{H}_2 + \text{ZnSO}_4.$$ 

Здесь окислитель – $\text{H}^+$, принимающий электроны от цинка, меняющий степень окисления с (+1) до (0). Сера не изменяет степень окисления (+6). Однако при реакции цинка с концентрированной кислотой продукты другие:

$$5\text{H}_2\text{SO}_4\text{в.} + 4\text{Zn} = \text{H}_2\text{S} + 4\text{ZnSO}_4 + 4\text{H}_2\text{O}^*,$$

здесь окислитель – не $\text{H}^+(+1)$, а сера (+6).

На величины стандартных потенциалов сильно влияет температура. Зависимость потенциалов от кислотности среды проявляется тогда, когда в уравнении полуреакции присутствуют (в левой или правой части – не важно) частицы $\text{H}^+$ или $\text{OH}^-$, и как именно потенциал зави-

* Возможно и образование $\text{SO}_2$. 

87
сит от рН, можно вычислить из уравнения Нёрнста. Более подробно
влияние этих факторов на характеристики ОВР рассмотрено далее
в разд. 3.6.

3.5.2. Распространённые окислители

Приведём здесь самые распространённые неорганические окислители
и восстановители, систематизировав их по химическому составу. Разумеется, списки не исчерпывающие.

Окислители:

Неметаллы – простые вещества (Г₂ – галогены, О₃, О₂; сера,
фосфор и другие неметаллы обладают менее выраженной окислительной способностью по сравнению с фтором и кислородом).

Соединения неметаллов в положительных степенях окисления: Н⁺ в HCl, HBr, H₂SO₄(раств.); кислоты НГ⁺ᵐΟₙ, где m = 1, 3, 5, 7, n = 1, 2, 3, 4 и их соли; S⁶⁺ в S₆O₃, H₂S₆O₄(конц); азот в разных степенях окисления в HN⁺⁵O₃, N⁺⁴O₂, HN⁺³O₂; H₂Se⁺⁶O₄, H₃Sb⁺⁵O₄ и другие.

Соединения неметаллов в промежуточных отрицательных степенях окисления (Н₂О₁₋₂ и другие пероксиды и пероксосоединения, Na₂O¹₋₂, BaO¹₋₂, K₂S₂O₈ и др.); соединения переходных металлов в высших и промежуточных степенях окисления (Mn⁺⁷O₄⁻, Mn⁺⁶O₄²⁻, Mn⁺⁴O₂, Cr⁺⁶O₇²⁻, Fe³⁺, Cu²⁺, Ag⁺, и т. д., и т. п.); соединения металлов IVA и VA групп в высших степенях окисления (Pb⁺⁴O₂, KBi⁺⁵O₃).

Таблица 2

Распространённые окислители

<table>
<thead>
<tr>
<th>Сила Ox</th>
<th>Перечень окислителей</th>
<th>E°, В</th>
</tr>
</thead>
<tbody>
<tr>
<td>Уникальный</td>
<td>F₂/F⁻</td>
<td>2,87</td>
</tr>
<tr>
<td>Очень сильные</td>
<td>НГОₙ и ГОₙ⁻, Н⁺/Г⁻, где Г = Cl, Br, n = 1; 2; О₃; H₂O₂, H⁺/H₂O и др. пероксиды; S₂O₈²⁻/SO₄²⁻; МВиО₃, где М = Na, K; PbO₂; M₂FeO₄, M = Na, K; Co³⁺</td>
<td>1,6–2</td>
</tr>
<tr>
<td>Сильные</td>
<td>НГОₙ, где Г = Cl, Br, n = 3; 4; ГО₅⁻, H⁺/Г⁻, Г = Cl, Br; MnO₄⁻, H⁺/Mn²⁺; Cr₂O₇²⁻, H⁺/Cr³⁺; Cl₂; O₂, H⁺/H₂O</td>
<td>1,2–1,5</td>
</tr>
<tr>
<td>Средние</td>
<td>Br₂; HNO₃; HNO₂; Fe⁴⁺; Cu²⁺; Ag⁺; I₂</td>
<td>0,5–1,0</td>
</tr>
<tr>
<td>Слабые</td>
<td>H⁺/H₂; H₂SO₄/SO₂; Sn⁴⁺/Sn²⁺; O₂/OH⁻</td>
<td>0–0,5</td>
</tr>
<tr>
<td>Очень слабые</td>
<td>H₂O, OH⁻/H₂; Pb²⁺/Pb; Sn²⁺/Sn; Fe²⁺; Cr³⁺; Na⁺; Li⁺</td>
<td>&lt; 0</td>
</tr>
</tbody>
</table>
Точная количественная мера силы того или иного окислителя – величина соответствующего стандартного электродного потенциала. Тем не менее, полезно помнить примерно силу нескольких типичных окислителей и восстановителей. Сгруппируем распространённые окислители (для водных растворов) в табл. 2, разделив на группы: очень сильные, сильные и т.п. – конечно, отнесение окислителей в группы условное. Мы приняли здесь за сильный окислитель перманганат-ион в кислой среде (E° = 1,5 В), соответственно, более сильные Ox назвали очень сильными, более слабые средними, далее слабыми и т.п.

Приведённая в табл. 2 классификация не исчерпывающая и применять её можно только к водным растворам при комнатной температуре. Молекулярный кислород, указанный как сильный Ox для кислой среды и слабый для щелочной, является очень сильным окислителем в газообразном состоянии при высокой температуре, и т.п.

3.5.3. Распространённые восстановители

Восстановители:

К восстановителям относятся все металлы – простые вещества.

Соединения переходных металлов в низших степенях окисления (Mn²⁺, Cr²⁺, Fe²⁺, Cu⁺ и др.); соединения переходных металлов в промежуточных степенях окисления (Mn⁴⁺O₂, Fe³⁺, Cr³⁺ и др.) – в реакциях с сильными окислителями; соединения металлов IVA и VA подгрупп ПС в промежуточных степенях окисления (Sn²⁺, Sb³⁺).

Неметаллы – простые вещества: Н₂, С (графит, уголь, кокс) – проявляющие восстановительные свойства при повышенных температурах, часто использующиеся для получения металлов из оксидных форм, в том числе из их природных минералов в металлургии; все остальные неметаллы, кроме галогенов и кислорода – по отношению к галогенам и кислороду; галогены – по отношению к F₂, бром по отношению к F₂ и Cl₂, иод – ко всем остальным галогенам.

Соединения неметаллов в низших отрицательных степенях окисления (H₂S²⁻ и сульфиды, N⁻³H₃ и соли аммония, P⁻³H₃ и фосфиды, Н⁻ в гидридах, включая и комплексные, CH₄ и карбиды, Г, Br⁻ и Cl⁻ (последние два аниона – по отношению к сильным окислителям).

Соединения неметаллов в промежуточных положительных степенях окисления (C⁺²O, N⁺²O, HN⁺³O₂ и нитриты, S⁺⁴O₂ и сульфиты,
H₃P³⁺O₃, H₃P⁺¹O₂ и их соли и др.); соединения неметаллов в промежуточных отрицательных степенях окисления (H₂O⁻¹ и др. пероксиды и пероккосоединения, (S⁻²)²⁻ и др.) – в реакциях с сильными окислителями.

Некоторые восстановители классифицированы по их силе в табл. 3.

Это деление, как и для окислителей, весьма условное. Так, молекулярный водород, отнесённый здесь к средним восстановителям (для кислой среды), проявляет очень сильные восстановительные свойства в газообразном состоянии при повышенных температурах.

Таблица 3

Распространённые восстановители

<table>
<thead>
<tr>
<th>Сила Red</th>
<th>Перечень восстановителей</th>
<th>E°, B*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Очень сильные</td>
<td>Щелочные и щелочноземельные металлы; H⁺ и гидриды металлов</td>
<td>&lt;−2</td>
</tr>
<tr>
<td>Сильные</td>
<td>Металлы до водорода в ряду напряжений; S²⁻; P; H₂/ОH⁻</td>
<td>&lt; 0</td>
</tr>
<tr>
<td>Средние</td>
<td>H₂/H⁺; H₂O, H⁺/ОH⁻; Ё; H₂S; S, SO₂; SO₃²⁻; Sn²⁺</td>
<td>0−0,5</td>
</tr>
<tr>
<td>Слабые</td>
<td>Br⁻; NO₂⁻; NO; NO₂</td>
<td>0,5−1</td>
</tr>
<tr>
<td>Очень слабые</td>
<td>Cl⁻; H₂O, H⁺/О₂; Г₂, H⁺/ГО₂⁻, где Г = Cl, Br, I</td>
<td>&gt; 1</td>
</tr>
<tr>
<td>Уникальный</td>
<td>F⁻</td>
<td>2,87</td>
</tr>
</tbody>
</table>

Отметим, что в принципе соединения, содержащие элементы в промежуточных степенях окисления, могут в реакциях с разными реагентами проявлять как окислительные, так и восстановительные свойства – в зависимости от окислительно-восстановительных свойств второго реагента. Часто такая двойственность ОВ-свойств проявляется реально: так, S(0) сгорает на воздухе, превращаясь в оксид серы (+4), SO₂, т. е. реагирует с кислородом как восстановитель. Но в реакции с таким сильным восстановителем, как металлический цинк, сера реагирует как окислитель, превращаясь в сульфид, ZnS, S(−2). Не могут проявлять восстановительных свойств элементы в высших степенях окисления, для серы (+6): SO₃, H₂SO₄, |

* Величина потенциала приведена для катодной формы записи полуреакции, т. е. для окисления восстановителей знак будет обратным.
Na₂SO₄, SO₂Cl₂ и т. п., так как сера в них уже «отдала» все свои валентные электроны. Не могут проявлять окислительных свойств элементы в низших степенях окисления, для серы это (−2): H₂S, NaHS, As₂S₃, As₂S₅ и т. п.

3.5.4. Электрохимический ряд напряжений металлов

Пример классификации восстановителей по их силе — электрохимический ряд напряжений (правильнее — ряд активности) металлов. Для практики важно знать, реагируют ли металлы с кислотами:

\[ 2M\text{тв.} + 2nH^+ = H_2\text{газ} + 2M^{n+}. \]

Эта реакция включает две полурации (в катодной форме):
1) \( 2H^+ + 2e = H_2 \) — восстановление \( Ox; \)
2) \( M^{n+} + ne = M \) — окисление \( Red. \)

Так как \( E_1^{°} = 0 \), то \( \Delta E^{°} = E_1^{°} - E_2^{°} = - E_2^{°} \), и если \( E_2^{°} < 0 \) — реакция разрешена, если \( E_2^{°} > 0 \) — то запрещена для стандартных состояний всех участников, т. е. для \( pH = 0 \) (1 М раствор сильной кислоты) и \( [M^{n+}] = 1 \) моль/л, при \( T = 298 \) К).

Ряд активностей (напряжений) металлов — последовательность металлов, записанная в порядке возрастания их стандартных потенциалов \( E^{°}_{298}(M^{n+}/M): \)

Li, K, Rb, Ba, Sr, Ca, Na, Ce, Mg, Be, Al, Ti, Mn, V, Zn, Cr, Ga, Fe, Cd, In, Tl, Co, Ni, Sn, Pb, H₂, W, Ge, Sb, Re, Bi, Cu, Ru, Rh, Hg, Ag, Os, Pt, Pd, Ir, Au.

Ряд активностей даёт возможность наглядно оценить, разрешены ли различные ОВР с участием металлов. Из рассмотрения выше электродных потенциалов следует, что если металл располагается в ряду активностей до водорода, то возможна его реакция с 1 М сильной кислотой с выделением газообразного водорода; если после водорода — то такая ОВР термодинамически запрещена.

Металлы, расположенные левее, могут вытеснять расположенные правее, из их солей в 1 М водных растворах. Например, разрешена реакция \( Mn + Fe^{2+} = Fe + Mn^{2+} \) или \( 2Cr + 3Cd = 3Cd^{2+} + 2Cr^{3+} \), но запрещены обратные или реакция \( 2Bi + 3Zn^{2+} = 3Zn + 2Bi^{3+} \).

Можно использовать ряд активности и для оценки направлений любых других реакций с участием металлов и их ионов, например, окисления металлов кислородом в присутствии воды (коррозии металлов):

\[ 4M\text{тв.} + nO_{2\text{газ}} + 2nH_2O_{ж.} = 4M(OH)_n\text{тв.}. \]
Величина стандартного потенциала полуреакции кислородного электрода

\[ \text{O}_2 + 2\text{H}_2\text{O} + 4e = 4\text{OH}^- \quad E^{\circ} (\text{O}_2/\text{OH}^-) = 0,40 \text{ В} \]

попадает между медью и ртутью – следовательно, при парциальном давлении кислорода 1 атм (в воздухе 0,2 атм) металлы, расположенные левее ртути, могут окисляться кислородом при \( p\text{H} = 14 \) (в 1 М щёлочах), ртуть и правее расположенные металлы – окисляться не будут.

При оценках возможного направления ОВР (как, впрочем, и любых других процессов) не следует забывать и о кинетике – даже разрешённые термодинамически процессы могут блокироваться кинетическими факторами (пассивация, ингибитирование и т. п.). Известный из школьных учебников пример – расположенное в ряду напряжений левее водорода железо не реагирует с концентрированной серной кислотой, что позволяет хранить и транспортировать её в стальных ёмкостях. Подробнее о кинетических факторах в ОВР см. в разд. 3.6.

Полезно понимать, что по отношению к реакциям с кислотами с выделением \( \text{H}_2 \) ряд активностей металлов может быть продолжен неметаллами: естественно, все неметаллы в этом гипотетическом ряду будут располагаться после водорода и после самых неактивных металлов. Так что реакции с кислотами с выделением водорода для галогенов, S, Se, P, As, C, Si, Ge, B и т. п. термодинамически запрещены.

### 3.6. Влияние различных факторов на протекание ОВР

#### 3.6.1. Возможность протекания параллельных ОВР

Многие окислители могут быть восстановлены до разных продуктов; многие восстановители также могут быть окислены до разных продуктов; следовательно, часто реакция между некоторыми конкретными окислителем и восстановителем может протекать до разных продуктов, и нередко эти процессы происходят параллельно (одновременно). К таким примерам относятся распространённые и практически важные реакции серной и азотной кислот с различными восстановителями. Рассмотрим реакцию между \( \text{HNO}_3 \) и металлическим цинком.

Здесь возможна единственная полуреакция окисления восстановителя (все реакции приводим в катодной форме):
Zn\(^{2+}\) + 2e = Zn \hspace{1cm} E^{\circ}_{\text{Red}} = -0,76 \text{ В.}

Возможных полуреакций восстановления азотной кислоты не менее пяти (опустим возможные полуреакции восстановления N(+5) до N(+3), N(−1), N(−2)):

1) \(\text{NO}_3^- + e + 2H^+ = \text{NO}_2 + H_2O\) \hspace{1cm} E^{\circ}_{\text{Ox1}} = 0,80 \text{ В;}
2) \(\text{NO}_3^- + 3e + 4H^+ = \text{NO} + 2H_2O\) \hspace{1cm} E^{\circ}_{\text{Ox2}} = 0,96 \text{ В;}
3) \(\text{NO}_3^- + 4e + 4H^+ = \text{N}_2O + 2H_2O\) \hspace{1cm} E^{\circ}_{\text{Ox3}} = 1,12 \text{ В;}
4) \(2\text{NO}_3^- + 10e + 12H^+ = 5\text{N}_2 + 6H_2O\) \hspace{1cm} E^{\circ}_{\text{Ox4}} = 1,24 \text{ В;}
5) \(\text{NO}_3^- + 8e + 10H^+ = \text{NH}_4^+ + 3H_2O\) \hspace{1cm} E^{\circ}_{\text{Ox5}} = 0,87 \text{ В.}

Соответственно в принципе возможны пять ОВР между HNO\(_3\) и Zn:

1) \(4\text{HNO}_3 + Zn = 2\text{NO}_2 + Zn(\text{NO}_3)_2 + 2H_2O;\)
2) \(8\text{HNO}_3 + 3Zn = 2\text{NO} + 3Zn(\text{NO}_3)_2 + 4H_2O;\)
3) \(10\text{HNO}_3 + 4Zn = \text{N}_2O + 4Zn(\text{NO}_3)_2 + 5H_2O;\)
4) \(12\text{HNO}_3 + 5Zn = \text{N}_2 + 5Zn(\text{NO}_3)_2 + 6H_2O;\)
5) \(10\text{HNO}_3 + 4Zn = \text{NH}_4\text{NO}_3 + 4Zn(\text{NO}_3)_2 + 3H_2O.\)

Для всех пяти возможных реакций \(\Delta_r E^\circ > 0\) – следовательно, все они разрешены. Наибольшая величина ЭДС – для реакции (4). Однако на практике выход N\(_2\) весьма мал и заметен только при концентрации HNO\(_3\) ~10 % мас.; для концентрированной кислоты (~60 % мас.) образуется в основном NO\(_2\); при понижении концентрации кислоты среди продуктов её восстановления цинком преобладают NO (~30 % мас.), N\(_2\)O (~20 % мас.), NH\(_4\)NO\(_3\) (~3 % мас.) – выбор маршрута реакции определяется не термодинамическими, а исключительно кинетическими факторами. Такая тенденция – переход к более низким степеням окисления продуктов восстановления HNO\(_3\) – наблюдается и для других восстановителей (и чем менее активен восстановитель, тем меньше выражена тенденция к образованию продуктов восстановления N(+5) в низких степенях окисления). При практическом проведении ОВР с азотной кислотой образуется смесь продуктов её восстановления, но при соблюдении определённых условий можно получать достаточно чистые продукты: например, реакция концентрированной кислоты с медью приводит к такому преобладанию в продуктах NO\(_2\), что используется как препаративный метод получения диоксида азота.

Аналогично многие восстановители могут параллельно окисляться до разных степеней окисления, например, H\(_2\)S до S(0) и H\(_2\)SO\(_4\).
3.6.2. Влияние концентрации

На протекание ОВР влияют концентрации компонентов (подчеркнём — всех, а не только исходных реагентов; строго говоря, нужно говорить о зависимости от \( \Pi_{Ox}/\Pi_{Red} \)). Это влияние можно разделить на два типа:

1) термодинамическое влияние на положение равновесия — энергия Гиббса \( \Delta_r G \) (и соответственно \( \Delta_r E \) для ОВР) зависят от концентраций;

2) влияние концентрации на состав продуктов — как вследствие термодинамических, так и кинетических факторов.

3.6.2.1. Зависимость \( \Delta_r E \) от концентрации

Так как по уравнению Нёрнста

\[
\Delta_r E = \Delta_r E^\circ + \left( \frac{RT}{nF} \right) \ln \left( \frac{\Pi_{Ox}}{\Pi_{Red}} \right),
\]

tо, если известны концентрации реагентов и продуктов, легко определить зависимость \( \Delta_r E \) и положение равновесия ОВР. Для большинства ОВР такое влияние незначительно, изменение \( \Delta_r E \) вследствие изменения концентрационного слагаемого \( \left( \frac{RT}{nF} \right) \ln \left( \frac{\Pi_{Ox}}{\Pi_{Red}} \right) \) не превышает ~0,1 В, так как практически можно изменять концентрации в довольно узких пределах — на 2–3 порядка. Изменение концентрации на большие величины практически возможно только путём сильного разбавления, которое приводит к крайне низким количествам превратившихся веществ в обычных ОВР °.

Например, \( E(\text{Cu}^{2+}/\text{Cu}) \) для 0,001 М раствора соли Cu(2+)

\[
E = E^\circ + (0,059/2) \lg(10^{-3}) = 0,34 - 0,01 = 0,33 \text{ В.}
\]

Отличие от \( E^\circ \) не превышает 0,01 В.

Качественно влияние изменения концентрации на положение равновесия ОВР можно, как и для любых других реакций, предсказать из принципа Ле Шателье: увеличение концентрации исходных реагентов сдвигает равновесие вправо, увеличение концентрации реагентов — влево.

3.6.2.2. Влияние концентрации на состав продуктов ОВР

Выше в разд. 3.6.1 рассмотрена возможность протекания параллельных маршрутов ОВР для одних и тех же реагентов. Обычно изменение концентрации реагентов приводит при этом к изменению

° Кроме случаев буферирования (в широком смысле) — участия кислотно-основных равновесий или равновесий с участием осадков, которые будут ниже рассмотрены отдельно.
состава продуктов. Для веществ, содержащих в своём составе одновременно два потенциальных окислителя (или восстановителя) возможно также восстановление (окисление) разных элементов в зависимости от концентрации.

Важный пример такой возможности — серная кислота, $\text{H}_2\text{S}^6\text{O}_4$, в которой имеется два потенциальных окислителя — $\text{H}^{+1}$ и $\text{S}^{+6}$. Величина $E^\circ(\text{H}^+/\text{H}_2)$ зависит от $[\text{H}^+]$, величины $E^\circ(\text{SO}_4^{2-}, \text{H}^+/\text{SO}_2)$, $E^\circ(\text{SO}_4^{2-}, \text{H}^+/\text{S})$, $E^\circ(\text{SO}_4^{2-}, \text{H}^+/\text{H}_2\text{S})$ зависят и от $[\text{H}^+]$, и от $[\text{SO}_4^{2-}]^*$. Отметим, что поскольку концентрированная серная кислота имеет концентрацию 96-98 % мас. (~30 моль/л), т. е. очень далеко за пределами идеальных растворов, то корректно рассчитать изменение соответствующих $E$ от концентрации по уравнению Нёрнста можно только с использованием активностей вместо концентраций.

В итоге зависимость электродных потенциалов разных полуэлектродов от концентрации и кинетические факторы приводят к тому, что при низких концентрациях серной кислоты (примерно до 10 % мас. или 1 моль/л) в реакциях с металлами, расположенными в электрохимическом ряду напряжений левее водорода выделяется водород; с металлами, расположенными в ряду напряжений правее водорода $\text{H}_2\text{SO}_4(\text{разб.})$ не реагирует — как и другие кислоты, не являющиеся окислителями по аниону. Т. е. при низких $[\text{H}_2\text{SO}_4]$ окислительные свойства $\text{S}(+6)$ не проявляются:

$$\text{H}_2\text{SO}_4(\text{разб.}) + \text{Zn} = \text{ZnSO}_4 + \text{H}_2.$$ 

При высоких $[\text{H}_2\text{SO}_4]$ (концентрированная кислота) существенно увеличиваются электродные потенциалы полуэлектродов восстановления сульфата, и реакции и с расположенными левее водорода, и правее водорода в ряду напряжений металлами, а также неметаллами происходят без выделения водорода, по сере, с образованием $\text{SO}_2$, $\text{H}_2\text{S}$ или иных серосодержащих продуктов:

$$5\text{H}_2\text{SO}_4(\text{конц.}) + 4\text{Zn} = 4\text{ZnSO}_4 + \text{H}_2\text{S} + 4\text{H}_2\text{O};$$
$$2\text{H}_2\text{SO}_4(\text{конц.}) + \text{Cu} = \text{CuSO}_4 + \text{SO}_2 + 2\text{H}_2\text{O};$$
$$5\text{H}_2\text{SO}_4(\text{конц.}) + 2\text{As} = 2\text{H}_3\text{AsO}_4 + 5\text{SO}_2 + 2\text{H}_2\text{O}.$$ 

3.6.3. Влияние избытка – недостатка реагентов

Влияние избытка – недостатка реагентов на протекание ОВР — несколько иное, чем рассмотренное выше влияние концентрации.

* Точнее, от соответствующего соотношения концентраций $P_{\text{Ox}}/P_{\text{Red}}$.  

95
Типичный пример такого влияния – хлорирование фосфора:

\[
\begin{align*}
\text{Cl}_2 \text{ (недост.)} & \to \text{PCl}_3 & \text{Cl}_2 \text{ (изб.)} & \to \text{PCl}_5, \\
\text{P} & \to \text{PCl}_3 & \text{Cl}_2 \text{ (изб.)} & \to \\
\end{align*}
\]

Происходит последовательное превращение сначала до PCl₃, затем до PCl₅. При недостатке хлора окисление проходит до P(+3); при избытке – сразу до P(+5). Даже если в ходе реакции успевает образоваться PCl₅, при избытке непрореагировавшего P(0) они конпропорционально до PCl₃. По такой схеме последовательных реакций происходит галогенирование многих неметаллов: P, As, Sb, S, Se, Te, фторирование галогенов.

Аналогично при недостатке азотной кислоты в реакции с металлической ртутью происходит окисление до Hg(+1), а при избытке сразу до Hg(+2):

\[
\begin{align*}
2\text{Hg (изб.)} + 4\text{HNO}_3 & = \text{Hg}_2(\text{NO}_3)_2 + 2\text{NO}_2 + 2\text{H}_2\text{O}; \\
\text{Hg} + 4\text{HNO}_3(\text{изб.}) & = \text{Hg(NO}_3)_2 + 2\text{NO}_2 + 2\text{H}_2\text{O}.
\end{align*}
\]

3.6.4. Влияние температуры

Как следует из уравнения Нёрнста, \( \Delta_rE \) зависит от температуры:

\[
\Delta_rE_T = \Delta_rE_T^0 + (RT/nF) \ln(\Pi_{\text{Ox}}/\Pi_{\text{Red}}).
\]

При этом наиболее существенно зависит от \( T \) именно первое слагаемое, \( \Delta_rE_T^0 \), так как \( \Delta_rE_T^0 = (-\Delta_rG_T^0)/nF \), а энергия Гиббса реакции существенно зависит от \( T \): \( \Delta_rG_T^0 = \Delta_rH_T^0 - T\Delta_rS_T^0 \). Еще раз отметим, что справочные данные, как правило, приводятся только для \( T = 298 \text{ К} \), \( E_{298^\circ} \).

При наличии параллельных маршрутов ОВР зависимость их \( \Delta_rE^0 \) от \( T \) может быть различной, что приводит к изменению продуктов ОВР с изменением температуры. Например, для хлора в щелочной среде, при стандартных состояниях разрешено параллельное диспропорционарирование как до Cl⁻ и ClO⁻ (1), так и до Cl⁻ и ClO₃⁻ (2). Разрешено и диспропорционарирование ClO⁻ до Cl⁻ и ClO₃⁻ (3), что видно из дополненной диаграммы Латимера.
На то, какие из возможных параллельно-последовательных маршрутов (1) – (3) реализуются, влияет температура. При температурах не выше комнатной достаточно быстро протекает реакция (1), а реакция (3) происходит настолько медленно, что с образующимся раствором хлорида и гипохлорита вполне можно работать препаратаивно. Но при 60–70 °C и выше преобладают маршруты (2) и (3), гипохлорита в растворе не остаётся.

Важные примеры влияния температуры на ОВР через кинетические факторы – окисление молекулярным кислородом и восстановление молекулярным водородом.

Кислород – довольно сильный окислитель даже при комнатной T, но только в кислой среде: $E_{298}(O_2, H^+/H_2O) = 1,23$ В. Однако многие реакции с участием кислорода при комнатной T не протекают или происходят очень медленно. Причина в высокой величине энергии диссоциации двойной связи в молекуле O₂, 499 кДж/моль. Сответственно энергии активации ОВР с участием молекулярного кислорода еще выше. Поэтому многие ОВР с участием O₂ приходится проводить при повышенных температурах, часто – не в растворах, а только в газовой фазе.

Подобная ситуация и с восстановлением Н₂, связь в котором хотя и одинарная, но очень прочная, 436 кДж/моль. Поэтому восстановительные свойства молекулярного водорода проявляются, как правило, только при повышенных температурах. В отличие от молекулярного Н₂, атомарный водород обладает высокой реакционной способностью. Практически это обеспечивают реакцией кислот с металлическим цинком – в выделяющемся при этом водороде содержится повышенная концентрация атомарного Н. Такой водород получил специальное название – in statu nascendi, водород в момент выделения.

Наиболее инертен в ОВР из-за высокой энергии тройной связи (946 кДж/моль) молекулярный азот: чтобы восстановить его, требуется не только высокая T, но и понижающий энергию активации катализатор (реакция получения аммиака). Окислить N₂ вообще практически невозможно – например, кислородом азот окисляется с
очень малым выходом только в электрическом разряде (что и позволило развиться жизни на Земле – иначе кислород атмосферы давно прореагировал бы с азотом).

3.6.5. Влияние кислотности среды

Окислительно-восстановительные превращения, протекающие в водных растворах, зачастую сопровождаются кислотно-основными взаимодействиями с непосредственным участием молекул воды либо ионов H⁺ и OH⁻. Участие этих частиц в окислительно-восстановительных реакциях (т. е. присутствие H⁺ или OH⁻ среди исходных реагентов или продуктов реакции) приводит к двум важным последствиям:

1) электродный потенциал некоторых окислителей зависит от кислотности среды (величины pH);
2) продукты некоторых ОВР зависят от кислотности среды.

И хотя влияние кислотности среды на ОВР – это разновидность влияния концентраций, в общем описанное в разд. 3.6.2, но оно важно и заслуживает отдельного рассмотрения. Как и в общем случае, можно разделить влияние pH на ОВР на термодинамическую зависимость Δ,E от pH и зависимость от pH состава продуктов.

3.6.5.1. Зависимость Δ,E от pH

Зависимость E и Δ,E от pH определяется уравнением Нёрнста. Рассмотрим его применение на конкретных примерах полуреакции

\[ \text{Cr}_2\text{O}_7^{2-} + 6e + 14\text{H}^+ = 2\text{Cr}^{3+} + 7\text{H}_2\text{O} \]

и реакции дихромата с H₂S.

Для приведённой полуреакции,

\[ E = E^\circ + (0,059/6)\log([\text{Cr}_2\text{O}_7^{2-}][\text{H}^+]^{14}/[\text{Cr}^{3+}]^2), \]

где из справочных данных \( E^\circ = 1,33 \text{ В} \).

При стандартных состояниях всех участников, кроме H⁺

\[ E(pH) = E^\circ + (0,059/6)\log[H^+]^{14} = 1,33 - (0,059\cdot14/6)pH. \]

Например, при \( pH = 10 \) \( E(10) = -0,05 \text{ В} \). Изменение среды с сильнокислой (\( pH = 0 \)) до слабощелочной уменьшило E более чем на 1,3 В и перевело окислитель из сильных в очень слабые – это очень сильное воздействие кислотности среды на ОВ-свойства. Такое большое уменьшение E при увеличении pH характерно для многих окислителей, а именно оксокислот и их анионов – пергало-
генатов и галогенатов, галогенитов и гипогалогенитов, перманганата, серной и азотной кислот и их анионов, некоторых оксидов и т. п.

Влияние кислотности среды на ОВР в водных растворах отличается от влияния концентраций других участников ОВР тем, что вследствие автопротолиза (самодиссоциации) находящейся в огромном избытке по отношению к остальным компонентам воды (~50 моль/л) в растворе могут обеспечиваться такие малые концентрации (до 10^{-14} моль/л и менее) Н+ или ОН−, создание и поддержание которых нереалистично для других веществ в водных растворах. Такие большие изменения концентраций и обеспечивают большие изменения электродных потенциалов и ЭДС соответствующих реакций.

В общем случае, если в полуреакции окислитель принимает n электронов, и в левой части уравнения полуреакции имеются Н+ со стехиометрическим коэффициентом m, зависимость потенциала такой полуреакции от pH (при стандартных состояниях остальных компонентов) описывается уравнением

$$E(pH) = E° - (0,059 \cdot m/n)pH.$$ 

Рассмотрим теперь влияние pH на ΔrE реакции

\[ \text{Cr}_2O_7^{2-} + 3H_2S_{\text{v}}. + 8H^+_{\text{v}}. = 2\text{Cr}^{3+}_{\text{v}}. + 3S_{\text{гв}}. + 7H_2O_{\text{ж}}. \]

Из справочных данных \(E^0(S/H_2S) = 0,14\) В и \(ΔrE^0 = 1,33 – 0,14 = 1,19\) В, т. е. при pH = 0 реакция разрешена, причём величина ΔrE велика, более 1 В. Рассчитаем ΔrE при pH = 10. Это можно сделать двумя способами: рассчитав отдельно потенциал каждой полуреакции и определив \(ΔrE = E_{\text{Окс}} - E_{\text{Ред}}\) или сразу применить уравнение Нёрнста к уравнению ОВР. Используем сначала первый способ.

\[ S_{\text{гв}}. + 2e + 2H^+_{\text{v}}. = H_2S_{\text{v}}. \quad E(pH) = 0,14 – (0,059 \cdot 2/2)pH = -0,45 \text{ В.} \]

\[ ΔrE(pH = 10) = -0,05 – (-0,45) = 0,40 \text{ В.} \]

Реакция разрешена и при pH = 10, но ЭДС уменьшилась почти в 3 раза – хотя восстановитель, H_{2}S, становится всё более сильным с увеличением pH, но сила окислителя Cr_{2}O_{7}^{2-} уменьшается заметнее.

Для полноты картины рассчитаем зависимость ЭДС реакции от pH без расчёта E полуреакций:

\[ ΔrE = ΔrE^0 + (0,059/6)\lg([\text{Cr}_2O_7^{2-}][H_2S]^3[H^+]^8/[\text{Cr}^{3+}]^2). \]

Для стандартных состояний всех компонентов, кроме Н+,

* За исключением ОВР, включающих равновесия осадок – раствор, рассматриваемые в следующем разделе.
\[ \Delta E(pH) = 1.19 - (0.059 \cdot 8/6)pH = 0.40 \text{ В для } pH = 10 - \text{ естественно, результат такой же, как и при первом способе расчёта.} \]

В отдельных случаях изменение среды с кислой на щелочную (особенно сильно щелочную, \( pH \geq 14 \)) может привести к изменению направления самопроизвольного протекания некоторых ОВР – из разрешённых они становятся запрещёнными. Так, манганат окисляет хлорид-ионы\((-1)\) (например, соляную кислоту) в кислой среде до молекулярного хлора\((0)\), \( \Delta E^\circ = 1.75 - 1.36 = 0.39 > 0 \):

\[
2\text{MnO}_4^{2-} + 8\text{Cl}^- + 16\text{H}^+ = 2\text{Mn}^{2+} + 4\text{Cl}_2 + 8\text{H}_2\text{O} \\
\text{Ox 1} \quad \text{Red 2} \quad \text{Кисл.} \quad \text{Red 1} \quad \text{Ox 2} \quad \text{Вода.}
\]

Но в щелочной среде разность потенциалов манганата и хлора отрицательна, \( \Delta E^\circ = 0.09 - 1.36 = -1.27 < 0 \), прямая реакция невозможна, разрешена обратная, для которой \( \Delta E^\circ = 1.27 > 0 \):

\[
4\text{Cl}_2 + 2\text{Mn}^{2+} + 16\text{OH}^- = 8\text{Cl}^- + 2\text{MnO}_4^{2-} + 8\text{H}_2\text{O} \\
\text{Ox 2} \quad \text{Red 1} \quad \text{Щел.} \quad \text{Red 2} \quad \text{Ox 1} \quad \text{Вода.}
\]

Такой приём – использование щелочной среды – часто используется для получения сильных окислителей (манганатов, хроматов, висмутатов и т. п.), например:

\[
2\text{CrO}_4^{2-} + 6\text{Br}^- + 16\text{H}^+ = 2\text{Cr}^{3+} + 3\text{Br}_2 + 8\text{H}_2\text{O} \\
\text{Ox 1} \quad \text{Red 2} \quad \text{Кисл.} \quad \text{Red 1} \quad \text{Ox 2} \quad \text{Вода;}
\]

\[
3\text{Br}_2 + 2\text{Cr}^{3+} + 16\text{OH}^- = 6\text{Br}^- + 2\text{CrO}_4^{2-} + 8\text{H}_2\text{O} \\
\text{Ox 2} \quad \text{Red 1} \quad \text{Щел.} \quad \text{Red 2} \quad \text{Ox 1} \quad \text{Вода.}
\]

Имеются и окислители, потенциал которых не зависит от кислотности среды – в случае, если в ОВР нет ни протонов, ни гидроксид-ионов как среди исходных реагентов, так и среди продуктов. К таким окислительно-восстановительным парам относятся галоген / галогенид-ион, катион металла / металл и многие другие.

3.6.5.2. Влияние pH на состав продуктов ОВР

Влияние кислотности среды на состав продуктов ОВР может быть обусловлено и термодинамическими, и кинетическими факторами, в том числе тем, что в разных средах разные формы существования элемента в водном растворе имеют различную устойчивость. Пример последнего – восстановление соединений Cr(+6) (CrO$_4^{2-}$, Cr$_2$O$_7^{2-}$ и др.). Продукты восстановления – соединения
Cr(+3). Гидроксид Cr(OH)_3 амфотерен, в кислой среде образует со- 
ли Cr^{3+}, в щелочной гидроксохроматы [Cr(OH)₆]³⁻:

\[
\text{Cr(OH)}_3 + 3\text{H}^+ = \text{Cr}^{3+} + 3\text{H}_2\text{O};
\]

\[
\text{Cr(OH)}_3 + 3\text{OH}^- = [\text{Cr(OH)}_6]^{3-}.
\]

Поэтому при восстановлении соединений Cr(+6) в кислой среде
образуются соли хрома(+3), в нейтральной – гидроксид хрома(+3), в
щелочной гидроксохроматы (табл. 4).

### Продукты восстановления Cr(+6) в разных средах

<table>
<thead>
<tr>
<th>Исходный Ox</th>
<th>Среда</th>
<th>Продукт восстановления</th>
</tr>
</thead>
<tbody>
<tr>
<td>CrO_4^{2−}, Cr_2O_7^{2−}, CrO_3 и др.</td>
<td>Кислая, H^+</td>
<td>Cr^{3+}</td>
</tr>
<tr>
<td></td>
<td>Нейтральная, H_2O</td>
<td>Cr(OH)_3 тв.</td>
</tr>
<tr>
<td></td>
<td>Щелочная, OH^-</td>
<td>[Cr(OH)_4]^{−,3}</td>
</tr>
</tbody>
</table>

Например, в кислой среде

\[
\text{Cr}_2\text{O}_7^{2−} + 3\text{SO}_3^{2−} + 8\text{H}^+ = 2\text{Cr}^{3+} + 3\text{SO}_4^{2−} + 4\text{H}_2\text{O}.
\]

Но в щелочной с тем же восстановителем образуется гидроксо-
хромат:

\[
\text{Cr}_2\text{O}_7^{2−} + 3\text{SO}_3^{2−} + 4\text{H}_2\text{O} = 2[\text{Cr(OH)}_4]^{−} + 3\text{SO}_4^{2−}.
\]

Если в ОВР среда кислая, среди продуктов не может быть осно-
вания – они нейтрализуются кислотой; если среда щелочная – среди
продуктов не может быть кислот, они нейтрализуются до солей. Например, восстановление и нитрата в щелочной среде, и азотной
кислоты активными металлами происходит до азота в одной и той же степени окисления, N(−3). Но в первом случае образуется осно-
вание (аммиак), а во втором – соль аммония:

\[
\text{NO}_3^- + 4\text{Zn}^+ + 7\text{OH}^- + 6\text{H}_2\text{O} = \text{NH}_3 + 4[\text{Zn(OH)}_4]^{2−};
\]

\[
\text{NO}_3^- + 4\text{Zn}^+ + 10\text{H}^+ = \text{NH}_4^+ + 4\text{Zn}^{2+} + 3\text{H}_2\text{O}.
\]

Другой пример влияния pH на ОВР – изменение степени окисле-
ния продуктов восстановления Mn(+7), табл. 5.

### Продукты восстановления перманганат-иона в разных средах

<table>
<thead>
<tr>
<th>Исходный Ox</th>
<th>Среда</th>
<th>Продукт восстановления</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnO_4^-</td>
<td>Кислая, H^+</td>
<td>Mn^{2+}</td>
</tr>
<tr>
<td></td>
<td>Нейтральная, H_2O</td>
<td>MnO_2 тв.</td>
</tr>
<tr>
<td></td>
<td>Щелочная, OH^-</td>
<td>MnO_4^{2−}</td>
</tr>
</tbody>
</table>
3.6.6. Особенности протекания ОВР с участием трудно растворимых соединений

Как показано в главе 1, наличие осадка трудно растворимого соединения создаёт и поддерживает в растворе равновесную концентрацию ионов этого соединения. Это похоже на поддержание равновесных концентраций $\text{H}^+$ и $\text{OH}^-$ за счёт автопротолиза воды. Избыток осадка позволяет поддерживать очень низкие концентрации ионов, что в свою очередь даёт возможность существенно изменять таким путём $E$ и $\Delta_E$.

Рассмотрим конкретный пример: рассчитаем потенциал электрода, состоящего из серебряной пластины, помещённой в раствор над осадком трудно растворимой соли $\text{AgCl}$ (произведение растворимости $K_L = 1,6 \cdot 10^{-10}$; $E^\circ(\text{Ag}^+/\text{Ag}) = 0,80$ В).

Концентрация ионов серебра $[\text{Ag}^+] = \sqrt{K_L} = 1,26 \cdot 10^{-5}$ моль/л.

Из уравнения Нёрнста $E = E^\circ + 0,059\lg[1,26 \cdot 10^{-5}] = 0,51$ В – отличие от $E^\circ$ почти 0,3 В, довольно значительное. Для менее растворимых соединений оно ещё больше, например, для $\text{AgI} (K_L = 1,5 \cdot 10^{-16})$ – около 0,5 В.

Поскольку наличие избытка осадка поддерживает постоянную равновесную концентрацию ионов, то электродный потенциал таких электродов очень стабилен. Такие электроды (металл + трудно растворимая соль этого металла в равновесии с насыщенным раствором этой соли; общий вид полуреакции $\text{M}_y\text{X}_z\text{тв.} + y\text{ze} = y\text{M}^{2+}_\text{в.} + z\text{X}^{2-}$) относят к электродам 2-го рода. Электроды 1-го рода – когда металл (или неметалл) находится в равновесии непосредственно с раствором его соли (соединения для неметалла): $\text{M}^{2+}_\text{в.} + ze = \text{M}_\text{тв.}$.

Все $\Delta_E$ отсчитываются относительно стандартного потенциала водородного электрода, принятого за ноль. На практике такой электрод неудобен – дорог, громоздок, требует источника газообразного водорода. Поэтому в качестве электродов сравнения в гальванических элементах используются электроды 2-го рода – хлорсеребряный или каломельный.
Хлорсеребряный электрод (рис. 11) состоит из покрытой слоем AgCl серебряной проволоки, помещённой в раствор KCl, содержащий избыток осадка AgCl. Хлорид калия — хорошо растворимая соль, сильный электролит, KCl $\rightarrow$ K$^+_{в.} +$ Cl$^-_{в.}$. Таким образом, электродная полуреакция AgCl$_{тв.} + e = $ Ag$_{тв.} +$ Cl$^-_{в.}$. В отличие от серебряного электрода, в котором электрон переносится на ион серебра в водном растворе, в хлорсеребряном перенос электрона происходит на ион серебра в кристаллической решётке AgCl — естественно, это разные состояния, энергетически, термодинамически и т. п., поэтому разные полуреакции, отличающиеся термодинамическими функциями $\Delta_r G^\circ$, $\Delta_r E^\circ$. Стандартное состояние такого электрода — избытки AgCl$_{тв.}$ и Ag$^+_{тв.}$ при стандартной концентрации $[Cl^-] = 1$ моль/л. Рассчитаем стандартный электродный потенциал хлорсеребряного электрода, зная $K_L$(AgCl) = 1,6·10$^{-10}$ и $E^\circ$(Ag$^+/Ag) = 0,80 В.

Используем закон Гесса. Пронумеруем процессы:
1) AgCl$_{тв.} + e = $ Ag$^+_{тв.} +$ Cl$^-_{в.}$;
2) Ag$^+_{в.} + e = $ Ag$_{тв.}$;
3) AgCl$_{тв.} = $ Ag$^+_{в.} +$ Cl$^-_{в.}$.

Интересующая нас полуреакция на хлорсеребряном электроде (1) = (2) + (3), и $\Delta_r G^\circ_1 = \Delta_r G^\circ_2 + \Delta_r G^\circ_3 = -n_1FE^\circ_1 = -n_2FE^\circ_2 - RT ln K_3$, и о $E^\circ_i = [E^\circ_2 + (RT/F)lnK_2] = 0,80 + 0,059lg1,6·10^{-10} 0,22$ В.

В табл. 6 сравниваются серебряный и хлорсеребряный, каломельный и ртутный электроды.

### Сравнение электродов 1-го и 2-го рода

<table>
<thead>
<tr>
<th>Электрод</th>
<th>Полуреакция</th>
<th>$E^\circ$, В</th>
</tr>
</thead>
<tbody>
<tr>
<td>Серебряный</td>
<td>Ag$^+_{в.} + e = $ Ag$^{тв.}$</td>
<td>0,80</td>
</tr>
<tr>
<td>Хлорсеребряный</td>
<td>AgCl$^{тв.} + e = $ Ag$^{тв.} +$ Cl$^-_{в.}$</td>
<td>0,22</td>
</tr>
<tr>
<td>Ртутный (Hg$^{2+}$/Hg)</td>
<td>Hg$^{2+}<em>{в.} + 2e = 2Hg</em>{ж.}$</td>
<td>0,79</td>
</tr>
<tr>
<td>Каломельный</td>
<td>Hg$^+<em>2$Cl$<em>2^{тв.} +2e = 2Hg</em>{тв.} + 2Cl^-</em>{в.}$</td>
<td>0,27</td>
</tr>
</tbody>
</table>

Каломельный электрод состоит из пластинки амальгамы (содержащей металлическую ртуть), покрытой слоем каломели — трудно растворимого хлорида ртути (+1), Hg$^+_2$Cl$_2$; пластинка помещается в раствор KCl, содержащий избыток осадка Hg$^+_2$Cl$_2$. Концентрация раствора KCl в хлорсеребряном и каломельном электродах не обя-
зательна равна 1 моль/л – используются и 0,1 М, и насыщенные по KCl растворы.

3.6.7. Влияние кинетических факторов

Кинетические факторы проявляются и в том, что из возможных параллельных маршрутов ОВР не всегда реализуются термодинамически самые выгодные (т. е. с наибольшей величиной ΔrE), и во влиянии концентраций, температуры, pH на протекание ОВР – примеры уже приведены в соответствующих разделах выше. Здесь рассмотрим ещё один пример – как проявляется кинетический фактор при восстановлении перхлорат-иона.

Как изменяются окислительные свойства кислородных кислот хлора и их анионов ClO\textsubscript{n}⁻ с увеличением n от 1 до 4, т. е. с возрастанием степени окисления хлора с (+1) до (+7)? Казалось бы, чем выше степень окисления — тем сильнее окислительные свойства? На самом деле, для всех анионов в кислой среде величины стандартных потенциалов примерно равны и составляют в кислой среде ~1,5 В, см. табл. 7.

**Таблица 7**

<table>
<thead>
<tr>
<th>Анион</th>
<th>HClO⁻/Cl⁻</th>
<th>HClO\textsubscript{2}⁻/Cl⁻</th>
<th>ClO\textsubscript{3}⁻/Cl⁻</th>
<th>ClO\textsubscript{4}⁻/Cl⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>( E^\circ )</td>
<td>1,49</td>
<td>1,56</td>
<td>1,47</td>
<td>1,39</td>
</tr>
</tbody>
</table>

По величине \( E^\circ (\text{ClO}_4^-/\text{Cl}^-) \) почти не уступает остальным оксоанионам хлора и соответствует сильным окислителям, на уровне перманганат-иона. Но в действительности ион ClO\textsubscript{4}⁻ почти не проявляет окислительных свойств в водных растворах, за исключением реакций с такими сильнейшими восстановителями, как, например, Ti\textsuperscript{3+}. Причина этого — в симметричном тетраэдрическом строении перхлорат-иона и малом радиусе атома хлора. В результате центральный атом хлора в ClO\textsubscript{4}⁻ экранирован четырьмя концевыми атомами кислорода, и электронный перенос на Cl(+7) затруднён. Примечательно, что для иона BrO\textsubscript{4}⁻ (\( E^\circ (\text{BrO}_4^-, \text{H}^+/\text{Br}^-) = 1,72 \text{ В} \)) никаких кинетических затруднений в ОВР не наблюдается — его сильнейшие окислительные свойства проявляются в растворах легко и энергично. Причина в большом атомном радиусе брома, в результата-
те чего четыре атома кислорода не могут его достаточно эффективно экранировать.

Энергично проявляют окислительные свойства концентрированные растворы хлорной кислоты — в них в заметной концентрации находятся ионы $\text{H}_2\text{ClO}_4^+$ и другие ассоциаты, для которых экранирование меньше. Высокая температура также снимает кинетические затруднения, поэтому в твёрдом и расплавленном состоянии перхлораты энергично проявляют окислительные свойства.

3.7. Определение продуктов ОВР

Для определения продуктов ОВР в первую очередь нужно определить окислитель и восстановитель. Затем — возможные продукты восстановления окислителя и окисления восстановителя и определить $\Delta r_E$ потенциально возможных реакций. Если $\Delta r_E > 0$ — такие реакции разрешены. Но если имеется несколько разрешённых реакций, то в общем случае выбрать между ними нельзя, так как трудно учесть кинетические факторы. Требуются знания химических свойств соединений. Но некоторые общие соображения можно рассмотреть на конкретных примерах.

Пример 1. Определить продукты реакции между перманганатом калия $\text{KMnO}_4$ и сульфитом натрия $\text{Na}_2\text{SO}_3$ в водном растворе в нейтральной среде.

Степень окисления марганца в $\text{KMnO}_4$ +7, высшая — перманганат может быть только окислителем, принимать электроны. В сульфите сера находится в промежуточной степени окисления, +4, и в принципе может быть как окислителем, так и восстановителем (хотя минимальные «школьные» знания химии позволяют определить, что, конечно, восстановительные свойства для сульфитов выжжены гораздо в большей степени). Но даже совсем не зная конкретных химических свойств соединений серы(+4), из того факта, что первый реагент может быть только окислителем, однозначно следует вывод о том, что здесь $\text{Na}_2\text{SO}_3$ — восстановитель.

Далее следует определить, до каких степеней окисления восстановится окислитель, и окислится восстановитель, и какие конкретно соединения образуются в результате ОВР. Даже не зная конкретных химических свойств соединений серы, из одних только электронных конфигураций можно заключить, что для серы устойчивыми
могут быть соединения в чётных степенях окисления (−2), (0), (+2), (+4), (+6). В данной реакции при окислении серы (+4) может образоваться только сера (+6) — сульфаты или серная кислота. Предсказать продукт восстановления марганца (+7) «из общих соображений» не получится — нужно знать, что в нейтральной среде перманганат восстанавливается до марганца (+4) в форме MnO₂. Далее нужно составить уравнение реакции, что подробно разобрано в разделе 3.2.

Пример 2. Определить продукты реакции между хлоратом натрия NaClO₃ и сероводородом H₂S в водном растворе в кислой среде.

В H₂S сера находится в низшей степени окисления S(−2) — это однозначно восстановитель. Хотя в хлорате хлор находится в промежуточной степени окисления (+5) и в принципе может быть восстановителем, но стандартные электродные потенциалы восстановления ClO₃⁻ до разных продуктов весьма высоки. Здесь хлорат — окислитель. Далее возникает много вариантов. Сероводород может быть в принципе окислен до S(0), S⁴⁺O₂, S⁶⁺O₄²⁻. Хлорат может быть в принципе восстановлен в кислой среде до HCl¹³O₂, HCl¹¹O, Cl₂, Cl⁻. И все комбинации реакций термодинамически разрешены. Какие же продукты ОВР следует выбрать?

Обратим внимание, что и S(0), и S(+4) тоже обладают восстановительными свойствами, и в свою очередь могут быть окислены хлоратом — следовательно, можно ожидать (если по каким-то причинам для некоторых реакций не возникнут кинетические затруднения), то ОВР не остановится на промежуточных степенях окисления серы, и она будет окислена до высшей степени окисления, S(+6).

В свою очередь, соединения хлора в промежуточных степенях окисления (+3), (+1) — не менее (и даже более) сильные окислители, чем исходный хлорат, и вряд ли восстановление Cl(+5) остановится на этих промежуточных степенях окисления. Молекулярный хлор также достаточно сильный окислитель (E⁰(Cl₂/Cl⁻) = 1,36 В), чтобы окислить сероводород.

Итак, в качестве наиболее вероятных продуктов можно предложить серу в высшей, а хлор в низшей степени окисления — S(+6) (серная кислота или сульфат) и Cl(−1) (соляная кислота или хлорид). Определить конкретные формы серы и хлора можно только из
уравнения реакции. Составим уравнение ОВР по изложенному в разделе 3.2.3 алгоритму (промежуточные стадии опущены):

\[ 4\text{ClO}_3^- + 3\text{H}_2\text{S} = 4\text{Cl}^- + 3\text{SO}_4^{2-} + 6\text{H}^+. \]

В молекулярной форме

\[ 4\text{NaClO}_3 + 3\text{H}_2\text{S} = 4\text{NaCl} + 3\text{H}_2\text{SO}_4. \]

Итак, при недостаточных знаниях окислительно-восстановительных свойств конкретных соединений можно посоветовать выбирать и окисление, и восстановление до конца, высшей и низшей степеней окисления – хотя это не всегда будет верно. Отметим и такой нюанс. Если какой-то промежуточный продукт ОВР уходит из фазы переменного состава (как говорят, «из сферы реакции»), то реакция может остановиться на таком продукте. В рассмотренном выше примере это может быть твёрдая $\text{S}(0)$ и газообразный $\text{Cl}_2$.

Но предложить правильные продукты ОВР из общих соображений, без знания конкретных химических свойств, можно не всегда. Например, весьма трудно предугадать, что реакция окисления тиосульфата иодом количественно проходит до окисления серы до степени окисления $\text{S}(+2,5)$:

\[ 2\text{Na}_2\text{S}_2\text{O}_3 + \text{I}_2 = \text{Na}_2\text{S}_4\text{O}_6 + 2\text{NaI}. \]

Вопросы для самопроверки

К разд. 3.1

1. Дайте определения понятиям: окислительно-восстановительная реакция; окислитель; восстановитель.

2. Дайте определение понятиям: окисление; восстановление.

3. Определите степени окисления элементов в $\text{LiCl}$, $\text{Ca(ClO)}_2$, $\text{Al(ClO}_2)_3$, $\text{KClO}_3$, $\text{Ba(ClO}_4)_2$, $\text{ClF}_3$, $\text{PCl}_3$, $\text{ICl}$.

4. Определите степени окисления элементов в $\text{Al}_2\text{S}_3$, $\text{SO}_2$, $\text{S}_2\text{Cl}_2$, $\text{Na}_2\text{SO}_3$, $\text{Fe}_2(\text{SO}_4)_3$, $\text{SF}_6$, $\text{SOCl}_2$, $\text{SO}_2\text{Cl}_2$.

5. Определите степени окисления элементов в $\text{NH}_3$, $\text{N}_2\text{H}_4$, $\text{NH}_4\text{HSO}_4$, $\text{N}_2\text{O}_3$, $\text{Ba(NO}_2)_2$, $\text{Fe(NO}_3)_3$, $\text{Li}_3\text{N}$.

6. Определите степени окисления элементов в $\text{PH}_3$, $\text{Mg}_3\text{P}_2$, $\text{PCl}_5$, $\text{H}_3\text{PO}_2$, $\text{KH}_2\text{PO}_3$, $\text{NaPO}_3$, $\text{Ca}_3(\text{PO}_4)_2$, $\text{HAsO}_2$, $\text{Bi(NO}_3)_3$, $\text{NaBiO}_3$.

7. Определите степени окисления элементов в $\text{Mg}_2\text{Si}$, $\text{SiO}_2$, $\text{Na}_2\text{SiO}_3$, $\text{H}_4\text{SiO}_4$, $\text{Mg}_2\text{SiO}_4$, $\text{Ca}_3\text{Si}_2\text{O}_7$, $\text{Mg}_3\text{Al}_2(\text{SiO}_4)_3$, $\text{Al}_2[\text{Be}_3(\text{Si}_6\text{O}_{18})]$.

107
8. Определите степени окисления элементов в \( \text{O}_3, \text{H}_2\text{O}_2, \text{BaO}_2, \text{OF}_2, \text{O}_2\text{F}_2, \text{Na}_2\text{S}_2\text{O}_7, \text{Na}_2\text{S}_2\text{O}_8 \).

9. Приведите свои примеры межмолекулярной и внутримолекулярной \( \text{OB} \)-реакции.

10. Для Вашего примера межмолекулярной реакции укажите окислитель и восстановитель, их восстановленную и окисленную форму, напишите полураеакции окисления и восстановления.

11. Может ли сульфид-ион быть окислителем? Почему?

12. Может ли перманганат-ион быть восстановителем по \( \text{Mn}^{(+7)} \)? По \( \text{O}^{(-2)} \)?

13. Может ли серная кислота быть окислителем по \( \text{S}^{(+6)} \)? Восстановителем по \( \text{S}^{(+6)} \)?

14. По каким элементам серная кислота может быть окислителем?

15. Аммиак – окислитель или восстановитель?

16. \( \text{H}_2\text{S} \) и сульфиды – окислители или восстановители?

17. \( \text{SO}_2 \) и сульфиты – окислители или восстановители?

18. \( \text{HNO}_2 \) и нитриты – окислители или восстановители?

19. Приведите примеры реакций, в которых сера(0):
   а) окислитель;
   б) восстановитель;
   в) диспропорционирует.

20. Приведите примеры реакций, в которых \( \text{I}_2 \):
   а) окислитель;
   б) восстановитель;
   в) диспропорционирует.

К разд. 3.2

1. Для реакции \( \text{Fe}^{3+} + \text{Br}^- \rightarrow \text{Fe}^{2+} + \text{Br}_2 \) укажите окислитель и восстановитель, расставьте коэффициенты, напишите уравнения полураеакций окисления и восстановления.

2. Для реакции восстановления \( \text{K}_2\text{Cr}_2\text{O}_7 \) до \( \text{Cr}^{3+} \) с \( \text{Na}_2\text{SO}_3 \) в кислой среде укажите окислитель и восстановитель, расставьте коэффициенты, напишите уравнения полураеакций окисления и восстановления.

3. Укажите окислитель и восстановитель, расставьте коэффициенты, напишите уравнения полураеакций окисления и восстановле-
ния для реакции восстановления K₂Cr₂O₇ до Cr³⁺ с Na₂SO₃ в нейтральной и щелочной средах, учитывая, что Cr(OH)₃ – амфотерен.

4. Для реакции между HClO₃ и Na₂S до Cl(−1) и S(+6) укажите окислитель и восстановитель, расставьте коэффициенты, напишите уравнения полуреакций окисления и восстановления.

5. Для реакции между H₂O₂ и Na₂SO₃ в нейтральной среде укажите окислитель и восстановитель, расставьте коэффициенты, напишите уравнения полуреакций окисления и восстановления.

К разд. 3.3

1. Дайте определения понятиям: гальванический элемент; катод; анод; катодный процесс; анодный процесс.

2. Как выражается ЭДС гальванического элемента через энергию Гиббса протекающей в элементе реакции?

3. Докажите, что понятия электродных потенциалов и их разности можно применять не только при рассмотрении гальванических элементов, но и термодинамики проводимых обычным образом (в колбе, стакане) ОВР.

4. Чем отличаются величины электродного потенциала E и стандартного электродного потенциала E°?


7. Запишите уравнение Нёрнста для полуреакции F₂ + 2e = 2F⁻.

8. Запишите уравнение Нёрнста для полуреакции MnO₄⁻ + 5e + 8H⁺ = Mn²⁺ + 4H₂O.

9. Запишите уравнение Нёрнста для реакции, протекающей в медь-цинковом гальваническом элементе.

10. Определите величину E для полупроцесса Pb²⁺ + 2e = Pb для [Pb²⁺] = 0,001 моль/л.

11. Определите величину E для полупроцесса 2H⁺ + 2e = H₂ для pH = 10. Изменится ли эта величина, если стехиометрические коэффициенты разделить на 2?

12. При какой концентрации [Bi³⁺] электродный потенциал полуреакции Bi³⁺ + 3e = Bi равен 0 (E °(Bi³⁺/Bi) = 0,32 В)?

13. Что общего и в чём состоят отличия между гальваническими элементами, аккумуляторами и топливными элементами?
14. Запишите уравнение ОВР, протекающей в водородном топливном элементе.

15. Какой из электродов является катодом в концентрационном медном электроде – с большей или меньшей концентрацией Cu^{2+}?

16. Какой из электродов является катодом в концентрационном водородном электроде – с большим или меньшим значением pH?

К разд. 3.4

1. Из справочных данных по стандартным электродным потенциалам, определите, возможны ли для стандартных состояний всех участников следующие ОВР:
   а) Ni^{2+} + Co = Co^{2+} + Ni;
   б) 2Fe^{3+} + 2Br^- = 2Fe^{2+} + Br_2;
   в) 2Fe^{3+} + 2I^- → 2Fe^{2+} + I_2;
   г) HClO_3 + 3Na_2SO_3 = 3Na_2SO_4 + HCl.

2. Возможно ли для стандартных состояний всех участников ОВР окисление HBr до Br_2 в кислой среде перманганатом калия? Диоксидом марганца?

3. Возможно ли для стандартных состояний всех участников ОВР восстановление сульфата до сульфита водородом? Цинком?

4. Возможна ли для стандартных состояний всех участников ОВР Sn + Pb^{2+} = Pb + Sn^{2+}? Возможна ли эта же реакция, если [Sn^{2+}] = 0,1 моль/л, [Pb^{2+}] = 0,001 моль/л?

5. При каком pH возможно (при стандартных состояниях всех участников, кроме H^+/OH^-), диспропорционирование Cl_2 до Cl^- и ClO^-?

6. Зная $E^\circ(Tl^{3+/Ti^+}) = 1,28$ В и $E^\circ(Tl^{+/Ti}) = −0,34$ В, найти $E^\circ(Tl^{3+/Ti})$.

7. Пользуясь табличными данными, составьте диаграмму Латимера для соединений иода в щелочной среде (заменить E на численные значения):

Пользуясь составленной диаграммой, укажите, какие формы иода будут неустойчивы и склонны к диспропорционированию в щелочной среде. Ответ подтвердите соответствующими величинами $\Delta, E^\circ$. 

110
8. Из диаграммы Латимера для кислой среды определить:

\[
\begin{align*}
\text{NO}_3^- & \rightarrow \text{NO}_2^- & \rightarrow \text{NO} & \rightarrow \text{N}_2 & \rightarrow \text{NH}_4^+ \\
0.94 & & 0.99 & & 1.68 & & 0.26
\end{align*}
\]

а) Величину стандартного электродного потенциала \( E^\circ \) для полуреакции \( \text{NO}_3^- + 8e^- + 10\text{H}^+ = \text{NH}_4^+ + 3\text{H}_2\text{O} \).

б) Величину электродного потенциала \( E \) для этой полуреакции при \( p\text{H} = 10 \) (остальные вещества – по 1 моль / л).

в) Возможно ли диспропорционирование NO в кислой среде и на какие продукты? Написать уравнения реакций и соответствующие \( \Delta_r E^\circ \).

\textit{K разд. 3.5}

1. Назовите самый сильный окислитель и самый сильный восстановитель.

2. Из ряда электрохимических напряжений металлов, определите, может ли Co вытеснить из солей \( \text{M}^{2+} \), для \( \text{M} = \text{Co, Fe, Pb, Cu} \)?

3. Из ряда электрохимических напряжений металлов, определите, возможна ли для стандартных состояний всех участников ОВР \( \text{M} + 2\text{H}^+ = \text{M}^{2+} + \text{H}_2 \), если \( \text{M} : \) а) \( \text{Ba} \); б) \( \text{Cu} \) в) \( \text{Fe} \); г) \( \text{Mg} \); д) \( \text{Zn} \); е) \( \text{Hg} \).

\textit{K разд. 3.6}

1. Запишите все возможные ОВР окисления HI до \( \text{I}_2 \) хлорноноватстой кислотой, \( \text{HClO} \). Определите, разрешены ли они термодинамически.

2. Запишите уравнения реакций азотной кислоты (конц. и разб.) с \( \text{Mg, Cu и S} \).

3. Запишите уравнения реакций серной кислоты (конц. и разб.) с \( \text{Mg, Cu и S} \).

4. Определите потенциал серебряной проволоки, помещённой в насыщенный раствор \( \text{AgBr} \).

5. Определите потенциал хлорсеребряного электрода, в котором \( [\text{KCl}] = 0,1 \text{ моль/л} \).

6. Из данных по \( E^\circ (\text{Ag}^+/\text{Ag}) \) и произведению растворимости \( \text{AgI} \), определите \( E^\circ \) иодсеребряного электрода.

\textit{K разд. 3.7}

1. Определите продукты реакции между \( \text{NaClO}_3 \) и \( \text{K}_2\text{SO}_3 \) в кислой и щелочной средах.
2. Запишите уравнения реакций между $K_2Cr_2O_7$ и $Na_2S$ в кислой, нейтральной и щелочной средах. Определите, разрешены ли они термодинамически.

3.8. Заключение

ОВР – процессы с переносом электронов от восстановителя к окислителю; как в кислотно-основных процессах всегда присутствуют две сопряжённые кислотно-основные пары, так и в ОВР имеются две сопряжённых ОВ-пары. ОВР складываются из полуреакций восстановления окислителя и окисления восстановителя. Пространственное разделяние полуреакций окисления и восстановления приводит к появлению электродных потенциалов, и позволяет преобразовывать химическую энергию ОВР непосредственно в электрическую в гальванических элементах: на катоде (с большим потенциалом) происходит восстановление окислителя, на аноде (с меньшим потенциалом) окисление восстановителя; $\Delta_rE = E_k - E_a$. Величины $E^\circ$ сведены (для катодных полуреакций) в справочные данные. Энергия Гиббса ОВР и ЭДС связаны уравнением $\Delta_rG = nFE$. Потенциалы $E$ и $\Delta_rE$ зависят от концентраций по уравнению Нёрнста: $\Delta_rE = \Delta_rE^\circ + (RT/nF)ln(\Pi_{Ox}/\Pi_{Red})$. ОВР термодинамически разрешены, если $\Delta_rE > 0$. Величины стандартных катодных потенциалов сведены в справочные данные; для оценки протекания ОВР удобно использовать их в виде диаграмм Латимера.

Обратный процессу в гальваническом элементе процесс - электролиз, протекание ОВР за счёт внешнего источника электрической энергии. Принцип работы гальванического элемента широко применяется в аккумуляторах (многоразовых гальванических элементах) и топливных элементах (гальванических элементах с подводом реагентов).

На протекание ОВР влияют концентрации участников реакции, температура, часто $pH$ среды. Величины электродных потенциалов существенно зависят от $pH$ (что можно рассчитать, применяя уравнение Нёрнста), если среди участников полуреакции имеются $H^+$ или $OH^-$. Образование труднорастворимых соединений также изменяет величины электродных потенциалов.
Список литературы

**Основная литература**


**Дополнительная литература**


Третьяков Ю.Д., Мартыненко А.И., Григорьев А.Н., Цивадзе А.Ю. Неорганическая химия. Химия элементов. М.: Изд. МГУ. 2007. Т. 1, 2.


Шрайвер П., Эткинс П. Неорганическая химия. М.: Мир, 2004. Т. 1, 2.


Павлов Н. Н. Общая и неорганическая химия. М.: Дрофа, 2002.


Коренев Ю.М., Григорьев А.Н., Желиговская Н.Н., Дунаева К.М. Задачи и вопросы по общей и неорганической химии с ответами и решениями. М.: Мир, 2004.

Суворов А. В., Никольский А. Б. Вопросы и задачи по общей химии. СПб.: Химиздат, 2002.


Чупахин А. П., Коренев С. В., Федотова Т. Д. Химия в НГУ. Физическая химия. Новосибирск: НГУ, 2012.

Емельянов В. А., Наумов Н. Г., Федотова Т. Д. Химия в НГУ. Неорганическая химия. Новосибирск: НГУ, 2012.

Интернет-ресурсы

Использованная литература

Благодарности
Автор благодарит доц. А. И. Губанова, прочитавшего рукопись, за позитивные замечания, позволившие существенно улучшить структурирование и содержание Главы 3, доц. И. В. Ельцова за подготовку части рисунков и проф. С. Н. Конченко за рецензирование окончательной версии пособия.
Ионные процессы в водных растворах.
Часть 2. Осаждение, окислительно-восстановительные и обменные реакции
Учебное пособие